-
Notifications
You must be signed in to change notification settings - Fork 56
/
darknet_video.py
163 lines (141 loc) · 5.78 KB
/
darknet_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from ctypes import *
import math
import random
import os
import cv2
import numpy as np
import time
import darknet
import argparse
# !python darknet_video -v -c -w
# augument parser
ap = argparse.ArgumentParser()
ap.add_argument("-v" ,"--video", type=str, required=True,
help="Path to input video")
ap.add_argument("-c","--config", default="./config.json",
help="Path to yolo config file")
ap.add_argument("-w","--weights",type=str, required=True,
help="Path to yolo weight")
ap.add_argument("-l","--label",type=str, default="./data/classes.names",
help="Path to label file")
ap.add_argument("-m","--meta",type=str, default="./data/yolov4.data",
help="Path to metaPath")
ap.add_argument("-o","--output",type=str, default="./output.mp4",
help="Path to output file")
args = vars(ap.parse_args())
def check_argument(args):
assert os.path.isfile(args["video"]) == True, "Can't find " + args["video"]
assert os.path.isfile(args["config"]) == True, "Can't find " + args["config"]
assert os.path.isfile(args["weights"]) == True, "Can't find " + args["weights"]
assert os.path.isfile(args["meta"]) == True, "Can't find " + args["meta"]
assert os.path.isfile(args["label"]) == True, "Can't find " + args["label"]
def convertBack(x, y, w, h):
xmin = int(round(x - (w / 2)))
xmax = int(round(x + (w / 2)))
ymin = int(round(y - (h / 2)))
ymax = int(round(y + (h / 2)))
return xmin, ymin, xmax, ymax
def cvDrawBoxes(detections, img):
for detection in detections:
x, y, w, h = detection[2][0],\
detection[2][1],\
detection[2][2],\
detection[2][3]
xmin, ymin, xmax, ymax = convertBack(
float(x), float(y), float(w), float(h))
pt1 = (xmin, ymin)
pt2 = (xmax, ymax)
color = [int(c) for c in COLORS[LABELS.index(detection[0].decode())]]
#print(color, type(color))
cv2.rectangle(img, pt1, pt2, color, 1)
cv2.putText(img,
detection[0].decode() +
" [" + str(round(detection[1] * 100, 2)) + "]",
(pt1[0], pt1[1] - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
color, 2)
return img
netMain = None
metaMain = None
altNames = None
def YOLO():
global metaMain, netMain, altNames, COLORS, LABELS
videoPath = args["video"]
configPath = args["config"]
weightPath = args["weights"]
metaPath = args["meta"]
labelsPath = args["label"]
outputPath = args ["output"]
check_argument(args)
LABELS = open(labelsPath).read().strip().split("\n")
#print(LABELS, len(LABELS))
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3), dtype="uint8")
if not os.path.exists(configPath):
raise ValueError("Invalid config path `" +
os.path.abspath(configPath)+"`")
if not os.path.exists(weightPath):
raise ValueError("Invalid weight path `" +
os.path.abspath(weightPath)+"`")
if not os.path.exists(metaPath):
raise ValueError("Invalid data file path `" +
os.path.abspath(metaPath)+"`")
if netMain is None:
netMain = darknet.load_net_custom(configPath.encode(
"ascii"), weightPath.encode("ascii"), 0, 1) # batch size = 1
if metaMain is None:
metaMain = darknet.load_meta(metaPath.encode("ascii"))
if altNames is None:
try:
with open(metaPath) as metaFH:
metaContents = metaFH.read()
import re
match = re.search("names *= *(.*)$", metaContents,
re.IGNORECASE | re.MULTILINE)
if match:
result = match.group(1)
else:
result = None
try:
if os.path.exists(result):
with open(result) as namesFH:
namesList = namesFH.read().strip().split("\n")
altNames = [x.strip() for x in namesList]
except TypeError:
pass
except Exception:
pass
#cap = cv2.VideoCapture(0)
cap = cv2.VideoCapture(videoPath)
cap.set(3, 1280)
cap.set(4, 720)
out = cv2.VideoWriter(
"{}".format(outputPath), cv2.VideoWriter_fourcc(*"DIVX"), 18.0,
(darknet.network_width(netMain), darknet.network_height(netMain)))
print("[INFO] Start the YOLO loop...")
# Create an image we reuse for each detect
darknet_image = darknet.make_image(darknet.network_width(netMain),
darknet.network_height(netMain),3)
print("[INFO] Start processing video...")
while True:
prev_time = time.time()
ret, frame_read = cap.read()
if not ret:
break
frame_rgb = cv2.cvtColor(frame_read, cv2.COLOR_BGR2RGB)
frame_resized = cv2.resize(frame_rgb,
(darknet.network_width(netMain),
darknet.network_height(netMain)),
interpolation=cv2.INTER_LINEAR)
darknet.copy_image_from_bytes(darknet_image,frame_resized.tobytes())
detections = darknet.detect_image(netMain, metaMain, darknet_image, thresh=0.25)
image = cvDrawBoxes(detections, frame_resized)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
#print(1/(time.time()-prev_time))
out.write(image)
#cv2.imshow('Demo', image)
cv2.waitKey(3)
cap.release()
out.release()
print('[INFO] Save processed video as "{}"'.format(outputPath))
if __name__ == "__main__":
YOLO()