-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
347 lines (266 loc) · 13.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# -*- coding:utf-8 -*-
# Author: Roger
# Created by Roger on 2017/10/28
from __future__ import absolute_import
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.autograd import Variable
from layers.mask_util import lengths2mask
from layers import Embeddings, BilinearMatcher, DotWordSeqAttetnion, PaddBasedRNNEncoder, RNNEncoder
def get_rnn(opt, input_size):
if opt.multi_layer_hidden == 'concatenate':
rnn = PaddBasedRNNEncoder(input_size=input_size,
hidden_size=opt.hidden_size,
num_layers=opt.num_layers,
dropout=opt.encoder_dropout,
brnn=opt.brnn,
rnn_type=opt.rnn_type,
multi_layer_hidden='concatenate')
elif opt.multi_layer_hidden == 'last':
rnn = RNNEncoder(input_size=input_size,
hidden_size=opt.hidden_size,
num_layers=opt.num_layers,
dropout=opt.encoder_dropout,
brnn=opt.brnn,
rnn_type=opt.rnn_type,
multi_layer_hidden='last')
else:
raise NotImplementedError
return rnn
class DocumentReaderQA(nn.Module):
def __init__(self, dicts, opt, feat_dicts, feat_dims):
super(DocumentReaderQA, self).__init__()
self.embedding = Embeddings(word_vec_size=opt.word_vec_size,
dicts=dicts,
feature_dicts=feat_dicts,
feature_dims=feat_dims)
self.question_encoder = get_rnn(opt, self.embedding.output_size)
self.question_attention_p = nn.Parameter(torch.Tensor(self.question_encoder.output_size))
self.question_attention = DotWordSeqAttetnion(input_size=self.question_encoder.output_size,
seq_size=self.question_encoder.output_size)
# self.soft_align_linear = nn.Linear(self.embedding.output_size, self.embedding.output_size)
# self.soft_align_linear = nn.Linear(opt.word_vec_size, opt.word_vec_size)
# self.evidence_encoder = get_rnn(opt, self.embedding.output_size + 1 + opt.word_vec_size)
self.evidence_encoder = get_rnn(opt, self.embedding.output_size + 10)
self.start_matcher = BilinearMatcher(self.evidence_encoder.output_size, self.question_encoder.output_size)
self.end_matcher = BilinearMatcher(self.evidence_encoder.output_size, self.question_encoder.output_size)
self.dropout = nn.Dropout(p=opt.dropout)
self.ceLoss = nn.CrossEntropyLoss()
self.device = opt.device
self.reset_parameters()
def reset_parameters(self):
self.question_attention_p.data.normal_(0, 1)
def get_soft_align_embedding(self, q_word_emb, e_word_emb, q_lens, e_lens):
# (batch, q_len, word_size)
# (batch, e_len, word_size)
if self.soft_align_linear:
q_word_proj = F.relu(self.soft_align_linear(q_word_emb))
e_word_proj = F.relu(self.soft_align_linear(e_word_emb))
else:
q_word_proj = q_word_emb
e_word_proj = e_word_emb
batch_size_q, q_maxlen, word_size_q = q_word_proj.size()
batch_size_e, e_maxlen, word_size_e = e_word_proj.size()
assert batch_size_q == batch_size_e
assert word_size_q == word_size_e
# (batch, e_len, word_size) dot (batch, q_len, word_size) -> (batch, e_len, q_len)
scores = torch.bmm(e_word_proj, q_word_proj.transpose(2, 1))
# (batch, e_len) -> (batch, e_len, q_len)
# (batch, q_len) -> (batch, e_len, q_len)
e_mask = lengths2mask(e_lens, e_maxlen, byte=True).unsqueeze(-1).expand(scores.size())
q_mask = lengths2mask(q_lens, q_maxlen, byte=True).unsqueeze(1).expand(scores.size())
e_mask = 1 + e_mask * -1
q_mask = 1 + q_mask * -1
scores = scores.data.masked_fill_(q_mask.data, float("-inf"))
batch, e_len, q_len = scores.size()
scores = scores.view(batch * e_len, q_len)
# (batch, e_len, q_len, 1)
weight = F.softmax(scores).view(batch, e_len, q_len)
weight = weight.masked_fill_(e_mask, 0).unsqueeze(-1)
# (batch, q_len, word_size) -> (batch, e_len, q_len, word_size)
q_word_emb_expand = q_word_emb.unsqueeze(1).expand(batch, e_len, q_len, q_word_emb.size(2))
# (batch, e_len, word_size)
e_emb_aligned = torch.sum(weight * q_word_emb_expand, 2)
return e_emb_aligned
def random_zeros(self, inputs, n):
ones = torch.ones(inputs.size()).long()
rand_idx = [np.random.choice(ones.size(0), n), np.random.choice(ones.size(1), n),
np.random.choice(ones.size(2), n)]
ones[rand_idx] = 0
return inputs*Variable(ones).cuda(self.device)
def get_question_embedding(self, batch):
question_attention_p = self.question_attention_p.unsqueeze(0)
question_attention_p = question_attention_p.expand(batch.batch_size, self.question_attention_p.size(0))
q_input = torch.cat([batch.q_text.unsqueeze(-1), batch.q_feature], dim=-1)
q_word_emb = self.embedding.forward(q_input)
q_hidden_embs, _ = self.question_encoder.forward(q_word_emb, lengths=batch.q_lens)
q_hidden_embs = q_hidden_embs.contiguous()
q_hidden_emb, _ = self.question_attention.forward(question_attention_p, q_hidden_embs, lengths=batch.q_lens)
return q_hidden_emb
def get_evidence_embedding(self, batch, aligned_feature=None):
# e_input = torch.cat([batch.e_text.unsqueeze(-1), batch.e_feature[:, :, :2]], dim=-1)
e_input = batch.e_text
e_word_emb = self.embedding.forward(e_input)
# q_word_emb = self.embedding.forward(batch.q_text)
# e_trans = torch.transpose(e_word_emb[:, :, :300], 1, 2)
# cross = torch.bmm(q_word_emb, e_trans)
# cross_feature = torch.max(cross, 1)[0].unsqueeze(-1)
evidence_input_emb = [e_word_emb, batch.e_feature]
if aligned_feature is not None:
evidence_input_emb.append(aligned_feature)
evidence_input = torch.cat(evidence_input_emb, dim=2)
evidence_hidden, _ = self.evidence_encoder.forward(evidence_input, lengths=batch.e_lens)
return evidence_hidden
def score(self, batch):
# (batch, q_size)
question_embedding = self.get_question_embedding(batch)
# q_word_emb = self.embedding.forward(batch.q_text)
# e_word_emb = self.embedding.forward(batch.e_text)
# aligned_feature = self.get_soft_align_embedding(q_word_emb, e_word_emb, batch.q_lens, batch.e_lens)
# (batch, e_len, e_size)
# evidence_embedding = self.get_evidence_embedding(batch, aligned_feature)
evidence_embedding = self.get_evidence_embedding(batch)
# Size Check
batch_size = question_embedding.size(0)
q_emb_size = question_embedding.size(1)
e_max_len = evidence_embedding.size(1)
e_emb_size = evidence_embedding.size(2)
assert batch_size == evidence_embedding.size(0)
# (batch, e_len)
e_mask = lengths2mask(batch.e_lens, e_max_len)
# (batch, q_size) -> # (batch, 1, q_size)
q_embedding = question_embedding.unsqueeze(1)
# (batch, 1, q_size) -> # (batch, e_len, q_size)
question_embedding = q_embedding.expand(batch_size, e_max_len, q_emb_size)
question_embedding = question_embedding.contiguous()
# (batch, e_len, q_size) -> # (batch * e_len, q_size)
question_embedding = question_embedding.view(batch_size * e_max_len, q_emb_size)
e_embedding = evidence_embedding.contiguous()
# (batch, e_len, e_size) -> # (batch * e_len, e_size)
evidence_embedding = e_embedding.view(batch_size * e_max_len, e_emb_size)
# (batch * e_len, q_size) (batch * e_len, e_size) -> batch * e_len
start_score = self.start_matcher.forward(evidence_embedding, question_embedding).squeeze(-1)
end_score = self.end_matcher.forward(evidence_embedding, question_embedding).squeeze(-1)
# batch * e_len -> (batch, e_len)
start_score = start_score.view(batch_size, e_max_len) * e_mask
end_score = end_score.view(batch_size, e_max_len) * e_mask
'''
# sim_dot
q_embedding = question_embedding.unsqueeze(1)
e_embedding = evidence_embedding.contiguous()
start_score = torch.bmm(q_embedding, e_embedding.transpose(1, 2)).squeeze(1) * e_mask
end_score = torch.bmm(q_embedding, e_embedding.transpose(1, 2)).squeeze(1) * e_mask
'''
return start_score, end_score
def loss_old(self, batch):
start_score, end_score = self.score(batch)
def log_sum_exp(x, dim=0):
"""
:param x: (batch, label)
:return:
"""
max_value, _ = torch.max(x, dim)
max_exp = max_value.unsqueeze(dim).expand_as(x)
return max_value + torch.log(torch.sum(torch.exp(x - max_exp), dim))
start_norm = log_sum_exp(start_score, 1)
end_norm = log_sum_exp(end_score, 1)
# (batch, len) -> (batch, 1)
start_right_score = torch.gather(start_score, 1, batch.start_position.unsqueeze(-1))
end_right_score = torch.gather(end_score, 1, batch.end_position.unsqueeze(-1))
start_loss = torch.mean(start_norm - start_right_score)
end_loss = torch.mean(end_norm - end_right_score)
loss = start_loss + end_loss
return loss
def loss(self, batch):
start_score, end_score = self.score(batch)
start_right_score = batch.start_position
end_right_score = batch.end_position
start_loss = self.ceLoss(start_score, start_right_score)
end_loss = self.ceLoss(end_score, end_right_score)
loss = start_loss + end_loss
return loss
def loss_3(self, batch):
start_score, end_score = self.score(batch)
_, start_pos = torch.max(start_score, dim=1)
_, end_pos = torch.max(end_score, dim=1)
start_pos = start_pos.data.cpu()
end_pos = end_pos.data.cpu()
right_s = batch.start_position
right_e = batch.end_position
best_start = [x[0] for x in right_s]
best_end = [x[0] for x in right_e]
for i in range(len(best_start)):
if len(right_s[i]) == len(right_e[i]) and start_pos[i] in right_s[i]:
best_start[i] = start_pos[i]
best_end[i] = end_pos[i]
start_right_score = Variable(torch.LongTensor(best_start).cuda(self.device))
end_right_score = Variable(torch.LongTensor(best_end).cuda(self.device))
start_loss = self.ceLoss(start_score, start_right_score)
end_loss = self.ceLoss(end_score, end_right_score)
loss = start_loss + end_loss
return loss
@staticmethod
def decode(score_s, score_e, top_n=1, max_len=None):
"""Take argmax of constrained score_s * score_e.
from https://github.com/facebookresearch/DrQA/blob/master/drqa/reader/model.py
Args:
score_s: independent start predictions
score_e: independent end predictions
top_n: number of top scored pairs to take
max_len: max span length to consider
"""
pred_s = []
pred_e = []
pred_score = []
para_id = []
max_len = max_len or score_s.size(1)
for i in range(score_s.size(0)):
# Outer product of scores to get full p_s * p_e matrix
# scores = torch.ger(score_s[i], score_e[i])
scores = score_s[i].unsqueeze(1) + score_e[i].unsqueeze(0)
# scores = torch.exp(score_s[i]).unsqueeze(1) + torch.exp(score_e[i]).unsqueeze(0)
if isinstance(scores, Variable):
scores = scores.data
# Zero out negative length and over-length span scores
scores.triu_().tril_(max_len - 1)
# Take argmax or top n
scores = scores.cpu().numpy()
scores_flat = scores.flatten()
if top_n == 1:
idx_sort = [np.argmax(scores_flat)]
elif len(scores_flat) < top_n:
idx_sort = np.argsort(-scores_flat)
else:
idx = np.argpartition(-scores_flat, top_n)[0:top_n]
idx_sort = idx[np.argsort(-scores_flat[idx])]
s_idx, e_idx = np.unravel_index(idx_sort, scores.shape)
pred_s.append(s_idx[0]) # 默认取top1,否则 改成s_idx
pred_e.append(e_idx[0])
pred_score.append(scores_flat[idx_sort])
para_id.append(i)
return pred_s, pred_e, pred_score, para_id
def predict(self, q_evidens, top_n=1, max_len=15):
# (batch, e_len)
start_score, end_score = self.score(q_evidens)
pred_s, pred_e, pred_score, para_id = self.decode(start_score, end_score, top_n=top_n, max_len=max_len)
return pred_s, pred_e, pred_score, para_id
@staticmethod
def ensemble_predict(models, q_evidens, weights=None, top_n=1, max_len=15):
if weights is not None:
assert len(weights) == len(models)
else:
weights = [1. / len(models)] * len(models)
start_score_list, end_score_list = list(), list()
for index, model in enumerate(models):
start_score, end_score = model.score(q_evidens)
start_score_list += [start_score * weights[index]]
end_score_list += [end_score * weights[index]]
start_score = sum(start_score_list)
end_score = sum(end_score_list)
pred_s, pred_e, pred_score, para_id = DocumentReaderQA.decode(start_score, end_score,
top_n=top_n, max_len=max_len)
return pred_s, pred_e, pred_score, para_id
def forward(self, batch):
return self.loss(batch)