-
Notifications
You must be signed in to change notification settings - Fork 460
/
Copy pathllama_inference.py
128 lines (97 loc) · 4.51 KB
/
llama_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import argparse
import torch
import torch.nn as nn
import quant
from gptq import GPTQ
from utils import find_layers, DEV, set_seed, get_wikitext2, get_ptb, get_c4, get_ptb_new, get_c4_new, get_loaders
import transformers
from transformers import AutoTokenizer
def get_llama(model):
def skip(*args, **kwargs):
pass
torch.nn.init.kaiming_uniform_ = skip
torch.nn.init.uniform_ = skip
torch.nn.init.normal_ = skip
from transformers import LlamaForCausalLM
model = LlamaForCausalLM.from_pretrained(model, torch_dtype='auto')
model.seqlen = 2048
return model
def load_quant(model, checkpoint, wbits, groupsize=-1, fused_mlp=True, eval=True, warmup_autotune=True):
from transformers import LlamaConfig, LlamaForCausalLM
config = LlamaConfig.from_pretrained(model)
def noop(*args, **kwargs):
pass
torch.nn.init.kaiming_uniform_ = noop
torch.nn.init.uniform_ = noop
torch.nn.init.normal_ = noop
torch.set_default_dtype(torch.half)
transformers.modeling_utils._init_weights = False
torch.set_default_dtype(torch.half)
model = LlamaForCausalLM(config)
torch.set_default_dtype(torch.float)
if eval:
model = model.eval()
layers = find_layers(model)
for name in ['lm_head']:
if name in layers:
del layers[name]
quant.make_quant_linear(model, layers, wbits, groupsize)
del layers
print('Loading model ...')
if checkpoint.endswith('.safetensors'):
from safetensors.torch import load_file as safe_load
model.load_state_dict(safe_load(checkpoint), strict=False)
else:
model.load_state_dict(torch.load(checkpoint), strict=False)
if eval:
quant.make_quant_attn(model)
quant.make_quant_norm(model)
if fused_mlp:
quant.make_fused_mlp(model)
if warmup_autotune:
quant.autotune_warmup_linear(model, transpose=not (eval))
if eval and fused_mlp:
quant.autotune_warmup_fused(model)
model.seqlen = 2048
print('Done.')
return model
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('model', type=str, help='llama model to load')
parser.add_argument('--wbits', type=int, default=16, choices=[2, 3, 4, 8, 16], help='#bits to use for quantization; use 16 for evaluating base model.')
parser.add_argument('--groupsize', type=int, default=-1, help='Groupsize to use for quantization; default uses full row.')
parser.add_argument('--load', type=str, default='', help='Load quantized model.')
parser.add_argument('--text', type=str, help='input text')
parser.add_argument('--min_length', type=int, default=10, help='The minimum length of the sequence to be generated.')
parser.add_argument('--max_length', type=int, default=50, help='The maximum length of the sequence to be generated.')
parser.add_argument('--top_p',
type=float,
default=0.95,
help='If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.')
parser.add_argument('--temperature', type=float, default=0.8, help='The value used to module the next token probabilities.')
parser.add_argument('--device', type=int, default=-1, help='The device used to load the model when using safetensors. Default device is "cpu" or specify, 0,1,2,3,... for GPU device.')
# fused mlp is sometimes not working with safetensors, no_fused_mlp is used to set fused_mlp to False, default is true
parser.add_argument('--fused_mlp', action='store_true')
parser.add_argument('--no_fused_mlp', dest='fused_mlp', action='store_false')
parser.set_defaults(fused_mlp=True)
args = parser.parse_args()
if type(args.load) is not str:
args.load = args.load.as_posix()
if args.load:
model = load_quant(args.model, args.load, args.wbits, args.groupsize, fused_mlp=args.fused_mlp)
else:
model = get_llama(args.model)
model.eval()
model.to(DEV)
tokenizer = AutoTokenizer.from_pretrained(args.model, use_fast=False)
input_ids = tokenizer.encode(args.text, return_tensors="pt").to(DEV)
with torch.no_grad():
generated_ids = model.generate(
input_ids,
do_sample=True,
min_length=args.min_length,
max_length=args.max_length,
top_p=args.top_p,
temperature=args.temperature,
)
print(tokenizer.decode([el.item() for el in generated_ids[0]]))