-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrial2.py
55 lines (45 loc) · 1.87 KB
/
trial2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from Project_A4.data.get_data import get_data
from Project_A4.model.model import TransformerModel
from Project_A4.train import train_model
from Project_A4.evaluate import evaluate_model
import torch
import torch.nn as nn
from argparse import Namespace
args = Namespace(
writer_dir=None,
train_batch_size=128,
eval_batch_size=32,
n_tokens=None,
embedding_dim=200,
fc_hidden_size=200,
n_layers=4,
n_heads=4,
dropout_p=0.2,
learning_rate=6.,
gamma_=0.95,
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
epochs=42,
save_model_path="../Project_A4/model/saved_model.pth",
)
input_dataset, TEXT = get_data(args.train_batch_size,
args.eval_batch_size,
args.device)
args.n_tokens = len(TEXT.vocab.stoi)
args.writer_dir = "experiments/run_04"
#####
loaded_model = torch.load("../Project_A4/model/saved_model.pth")
## torch.save(loaded_model.state_dict(), "../Project_A3/model/saved_model_A_state.pth")
## loaded_model = TransformerModel(n_tokens=args.n_tokens,
## embedding_dim=args.embedding_dim,
## n_heads=args.n_heads,
## fc_hidden_size=args.fc_hidden_size,
## n_layers=args.n_layers,
## dropout_p=args.dropout_p).to(device=args.device)
##
## loaded_model.load_state_dict(torch.load("../Project_A3/model/saved_model_A_state.pth"))
criterion = nn.CrossEntropyLoss()
test_loss = evaluate_model(model=loaded_model, val_data=input_dataset["test_data"],
epoch=None, criterion=criterion,
n_tokens=args.n_tokens,
bqtt_len=35, writer_dir=None)
print(test_loss) # 0.27508195076778436