Skip to content

Releases: r-dbi/bigrquery

bigrquery 1.1.0

06 Feb 23:35
Compare
Choose a tag to compare

Improved type support

  • bq_table_download() and the DBI::dbConnect method now has a bigint
    argument which governs how BigQuery integer columns are imported into R. As
    before, the default is bigint = "integer". You can set
    bigint = "integer64" to import BigQuery integer columns as
    bit64::integer64 columns in R which allows for values outside the range of
    integer (-2147483647 to 2147483647) (@rasmusab, #94).

  • bq_table_download() now treats NUMERIC columns the same was as FLOAT
    columns (@paulsendavidjay, #282).

  • bq_table_upload() works with POSIXct/POSIXct varibles (#251)

SQL translation

  • as.character() now translated to SAFE_CAST(x AS STRING) (#268).

  • median() now translates to APPROX_QUANTILES(x, 2)[SAFE_ORDINAL(2)] (@valentinumbach, #267).

Minor bug fixes and improvements

  • Jobs now print their ids while running (#252)

  • bq_job() tracks location so bigrquery now works painlessly with non-US/EU
    locations (#274).

  • bq_perform_upload() will only autodetect a schema if the table does
    not already exist.

  • bq_table_download() correctly computes page ranges if both max_results
    and start_index are supplied (#248)

  • Unparseable date times return NA (#285)

bigrquery 1.0.0

25 Apr 00:09
Compare
Choose a tag to compare

Improved downloads

The system for downloading data from BigQuery into R has been rewritten from the ground up to give considerable improvements in performance and flexibility.

  • The two steps, downloading and parsing, now happen in sequence, rather than
    interleaved. This means that you'll now see two progress bars: one for
    downloading JSON from BigQuery and one for parsing that JSON into a data
    frame.

  • Downloads now occur in parallel, using up to 6 simultaneous connections by
    default.

  • The parsing code has been rewritten in C++. As well as considerably improving
    performance, this also adds support for nested (record/struct) and repeated
    (array) columns (#145). These columns will yield list-columns in the
    following forms:

    • Repeated values become list-columns containing vectors.
    • Nested values become list-columns containing named lists.
    • Repeated nested values become list-columns containing data frames.
  • Results are now returned as tibbles, not data frames, because the base print
    method does not handle list columns well.

I can now download the first million rows of publicdata.samples.natality in about a minute. This data frame is about 170 MB in BigQuery and 140 MB in R; a minute to download this much data seems reasonable to me. The bottleneck for loading BigQuery data is now parsing BigQuery's json format. I don't see any obvious way to make this faster as I'm already using the fastest C++ json parser, RapidJson. If this is still too slow for you (i.e. you're downloading GBs of data), see ?bq_table_download for an alternative approach.

New features

dplyr

  • dplyr::compute() now works (@realAkhmed, #52).

  • tbl() now accepts fully (or partially) qualified table names, like
    "publicdata.samples.shakespeare" or "samples.shakespeare". This makes it
    possible to join tables across datasets (#219).

DBI

  • dbConnect() now defaults to standard SQL, rather than legacy SQL. Use
    use_legacy_sql = TRUE if you need the previous behaviour (#147).

  • dbConnect() now allows dataset to be omitted; this is natural when you
    want to use tables from multiple datasets.

  • dbWriteTable() and dbReadTable() now accept fully (or partially)
    qualified table names.

  • dbi_driver() is deprecated; please use bigquery() instead.

Low-level API

The low-level API has been completely overhauled to make it easier to use. The primary motivation was to make bigrquery development more enjoyable for me, but it should also be helpful to you when you need to go outside of the features provided by higher-level DBI and dplyr interfaces. The old API has been soft-deprecated - it will continue to work, but no further development will occur (including bug fixes). It will be formally deprecated in the next version, and then removed in the version after that.

  • Consistent naming scheme:
    All API functions now have the form bq_object_verb(), e.g.
    bq_table_create(), or bq_dataset_delete().

  • S3 classes:
    bq_table(), bq_dataset(), bq_job(), bq_field() and bq_fields()
    constructor functions create S3 objects corresponding to important BigQuery
    objects (#150). These are paired with as_ coercion functions and used throughout
    the new API.

  • Easier local testing:
    New bq_test_project() and bq_test_dataset() make it easier to run
    bigrquery tests locally. To run the tests yourself, you need to create a
    BigQuery project, and then follow the instructions in ?bq_test_project.

  • More efficient data transfer:
    The new API makes extensive use of the fields query parameter, ensuring
    that functions only download data that they actually use (#153).

  • Tighter GCS connection:
    New bq_table_load() loads data from a Google Cloud Storage URI, pairing
    with bq_table_save() which saves data to a GCS URI (#155).

Bug fixes and minor improvements

dplyr

  • The dplyr interface can work with literal SQL once more (#218).

  • Improved SQL translation for pmax(), pmin(), sd(), all(), and any()
    (#176, #179, @jarodmeng). And for paste0(), cor() and cov()
    (@edgararuiz).

  • If you have the development version of dbplyr installed, print()ing
    a BigQuery table will not perform an unneeded query, but will instead
    download directly from the table (#226).

Low-level

  • Request error messages now contain the "reason", which can contain
    useful information for debugging (#209).

  • bq_dataset_query() and bq_project_query() can now supply query parameters
    (#191).

  • bq_table_create() can now specify fields (#204).

  • bq_perform_query() no longer fails with empty results (@byapparov, #206).

bigrquery 0.4.1

26 Jun 22:40
Compare
Choose a tag to compare
  • Fix SQL translation omissions discovered by dbplyr 1.1.0

bigrquery 0.4.0

23 Jun 15:20
Compare
Choose a tag to compare

New features

  • dplyr support has been updated to require dplyr 0.7.0 and use dbplyr. This
    means that you can now more naturally work directly with DBI connections.
    dplyr now also uses modern BigQuery SQL which supports a broader set of
    translations. Along the way I've also fixed some SQL generation bugs (#48).

  • The DBI driver gets a new name: bigquery().

  • New insert_extract_job() make it possible to extract data and save in
    google storage (@realAkhmed, #119).

  • New insert_table() allows you to insert empty tables into a dataset.

  • All POST requests (inserts, updates, copies and query_exec) now
    take .... This allows you to add arbitrary additional data to the
    request body making it possible to use parts of the BigQuery API
    that are otherwise not exposed (#149). snake_case argument names are
    automatically converted to camelCase so you can stick consistently
    to snake case in your R code.

  • Full support for DATE, TIME, and DATETIME types (#128).

Big fixes and minor improvements

  • All bigrquery requests now have a custom user agent that specifies the
    versions of bigrquery and httr that are used (#151).

  • dbConnect() gains new use_legacy_sql, page_size, and quiet arguments
    that are passed onto query_exec(). These allow you to control query options
    at the connection level.

  • insert_upload_job() now sends data in newline-delimited JSON instead
    of csv (#97). This should be considerably faster and avoids character
    encoding issues (#45). POSIXlt columns are now also correctly
    coerced to TIMESTAMPS (#98).

  • insert_query_job() and query_exec() gain new arguments:

    • quiet = TRUE will suppress the progress bars if needed.
    • use_legacy_sql = FALSE option allows you to opt-out of the
      legacy SQL system (#124, @backlin)
  • list_tables() (#108) and list_datasets() (#141) are now paginated.
    By default they retrieve 50 items per page, and will iterate until they
    get everything.

  • list_tabledata() and query_exec() now give a nicer progress bar,
    including estimated time remaining (#100).

  • query_exec() should be considerably faster because profiling revealed that
    ~40% of the time taken by was a single line inside a function that helps
    parse BigQuery's json into an R data frame. I replaced the slow R code with
    a faster C function.

  • set_oauth2.0_cred() allows user to supply their own Google OAuth
    application when setting credentials (#130, @jarodmeng)

  • wait_for() uses now reports the query total bytes billed, which is
    more accurate because it takes into account caching and other factors.

bigquery 0.3.0

28 Jun 14:01
Compare
Choose a tag to compare
  • New set_service_token() allows you to use OAuth service token instead of
    interactive authentication.from
  • ^ is correctly translated to pow() (#110).
  • Provide full DBI compliant interface (@krlmlr).
  • Backend now translates iflese() to IF (@realAkhmed, #53).

bigrquery 0.2.0

03 Mar 19:19
Compare
Choose a tag to compare
  • Compatiable with latest httr.
  • Computation of the SQL data type that corresponds to a given R object
    is now more robust against unknown classes. (#95, @krlmlr)
  • A data frame with full schema information is returned for zero-row results.
    (#88, @krlmlr)
  • New exists_table(). (#91, @krlmlr)
  • New arguments create_disposition and write_disposition to
    insert_upload_job(). (#92, @krlmlr)
  • Renamed option bigquery.quiet to bigrquery.quiet. (#89, @krlmlr)
  • New format_dataset() and format_table(). (#81, @krlmlr)
  • New list_tabledata_iter() that allows fetching a table in chunks of
    varying size. (#77, #87, @krlmlr)
  • Add support for API keys via the BIGRQUERY_API_KEY environment variable.
    (#49)

bigrquery 0.1.0

13 Jan 16:02
Compare
Choose a tag to compare

Initial release