forked from rudeboybert/JSE_OkCupid
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathJSE.R
169 lines (141 loc) · 7.27 KB
/
JSE.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
## ----echo=FALSE, warning=FALSE, message=FALSE----------------------------
# The following packages must be installed
library(xtable)
library(stringr)
library(dplyr)
library(ggplot2)
# Set rounding to 2 digits
options(digits=2)
## ----cache=TRUE, warning=FALSE, message=FALSE----------------------------
profiles <- read.csv(file="profiles.csv", header=TRUE, stringsAsFactors=FALSE)
n <- nrow(profiles)
## ----cache=TRUE, warning=FALSE, message=FALSE, all_heights, fig.height=4, fig.width=6, fig.cap="Heights of all users.", fig.align='center'----
require(mosaic)
favstats(height, data=profiles)
## ----cache=TRUE, warning=FALSE, message=FALSE----------------------------
require(dplyr)
profiles.subset <- filter(profiles, height>=55 & height <=80)
## ----cache=TRUE, warning=FALSE, message=FALSE, heights_by_sex, fig.height=7, fig.width=10, fig.cap="Histograms of user heights split by sex.", fig.align='center'----
histogram(~height | sex, width=1, layout=c(1,2), xlab="Height in inches",
data=profiles.subset)
## ----cache=TRUE, warning=FALSE, message=FALSE, sex_and_orientation, fig.height=4, fig.width=8, fig.cap="Distributions of sex and sexual orientation.", fig.align='center'----
par(mfrow=c(1, 2))
barplot(table(profiles$sex)/n, xlab="sex", ylab="proportion")
barplot(table(profiles$orientation)/n, xlab="orientation", ylab="proportion")
## ----cache=TRUE, warning=FALSE, message=FALSE, sex_by_orientation, fig.height=3.5, fig.width=4, fig.cap="Joint distribution of sex and sexual orientation.", fig.align='center'----
tally(orientation ~ sex, data=profiles, format='proportion')
sex.by.orientation <- tally(~sex + orientation, data=profiles)
sex.by.orientation
mosaicplot(sex.by.orientation, main="Sex vs Orientation", las=1)
## ----cache=TRUE, warning=FALSE, message=FALSE----------------------------
require(stringr)
essays <- select(profiles, starts_with("essay"))
essays <- apply(essays, MARGIN=1, FUN=paste, collapse=" ")
essays <- str_replace_all(essays, "\n", " ")
essays <- str_replace_all(essays, "<br />", " ")
## ----cache=TRUE, warning=FALSE, message=FALSE----------------------------
profiles$has.book <- str_detect(essays, "book")
tally(has.book ~ sex, profiles, format='proportion')
## ----echo=FALSE, cache=TRUE, warning=FALSE, message=FALSE, results='asis'----
queries <- c("travel", "food", "wine", "beer")
output <- data.frame(word=queries, female=rep(0, length(queries)), male=rep(0, length(queries)))
for(i in 1:length(queries)) {
query <- queries[i]
has.query <- str_detect(essays, query)
results <- table(has.query, profiles$sex)
output[i, 2:3] <- results[2, ] / colSums(results)
}
print(xtable(output, digits=c(0, 0, 3, 3), caption ="Proportions of each sex using word in essays.", label = "tab:word_use"), include.rownames=FALSE)
## ----cache=TRUE, warning=FALSE, message=FALSE, travel_vs_wine, fig.height=3.5, fig.width=3.5, fig.cap="Co-occurrence of `travel' and `wine.'", fig.align='center'----
profiles$has.wine <- str_detect(essays, "wine")
profiles$has.travel <- str_detect(essays, "travel")
travel.vs.wine <- tally(~has.travel + has.wine, data=profiles)
mosaicplot(travel.vs.wine, main="", xlab="travel", ylab="wine")
## ----cache=TRUE, warning=FALSE, message=FALSE----------------------------
profiles$has.football <- str_detect(essays, "football")
results <- tally(~ has.football + sex, data=profiles)
prop.test(x=results[1, ], n=colSums(results), alternative="two.sided")
## ----cache=TRUE, eval=FALSE, warning=FALSE, message=FALSE----------------
## c(1.1, 2.1, 3.1, 4.1) %>% sum() %>% round()
## round(sum(c(1.1, 2.1, 3.1, 4.1)))
## ----cache=TRUE, warning=FALSE, message=FALSE----------------------------
male.words <- subset(essays, profiles$sex == "m") %>%
str_split(" ") %>%
unlist() %>%
table() %>%
sort(decreasing=TRUE) %>%
names()
female.words <- subset(essays, profiles$sex == "f") %>%
str_split(" ") %>%
unlist() %>%
table() %>%
sort(decreasing=TRUE) %>%
names()
## ----cache=TRUE, warning=FALSE, message=FALSE----------------------------
# Top 25 male words:
male.words[1:25]
# Top 25 female words
female.words[1:25]
## ----cache=TRUE, warning=FALSE, message=FALSE----------------------------
# Words in the males top 500 that weren't in the females' top 500:
setdiff(male.words[1:500], female.words[1:500])
# Words in the male top 500 that weren't in the females' top 500:
setdiff(female.words[1:500], male.words[1:500])
## ----cache=TRUE, warning=FALSE, message=FALSE----------------------------
set.seed(76)
sample(1:10)
set.seed(76)
sample(1:10)
set.seed(79)
sample(1:10)
## ----cache=TRUE, warning=FALSE, message=FALSE----------------------------
profiles <- filter(profiles, height>=55 & height <=80)
set.seed(76)
profiles <- sample_n(profiles, 5995)
## ----cache=TRUE, warning=FALSE, message=FALSE----------------------------
require(ggplot2)
profiles <- mutate(profiles, is.female = ifelse(sex=="f", 1, 0))
base.plot <- ggplot(data=profiles, aes(x=height, y=is.female)) +
scale_y_continuous(breaks=0:1) +
theme(panel.grid.minor.y = element_blank()) +
xlab("Height in inches") +
ylab("Is female?")
## ----cache=TRUE, warning=FALSE, message=FALSE, is_female_vs_height, fig.height=3, fig.width=6, fig.cap="Female indicator vs height.", fig.align='center'----
base.plot + geom_point()
## ----cache=TRUE, warning=FALSE, message=FALSE, is_female_vs_height_jittered, fig.height=3, fig.width=6, fig.cap="Female indicator vs height (jittered).", fig.align='center'----
base.plot + geom_jitter(position = position_jitter(width = .2, height=.2))
## ----cache=TRUE, warning=FALSE, message=FALSE----------------------------
linear.model <- lm(is.female ~ height, data=profiles)
msummary(linear.model)
b1 <- coef(linear.model)
b1
## ----cache=TRUE, warning=FALSE, message=FALSE----------------------------
logistic.model <- glm(is.female ~ height, family=binomial, data=profiles)
msummary(logistic.model)
b2 <- coefficients(logistic.model)
b2
## ----cache=TRUE, warning=FALSE, message=FALSE, is_female_vs_height_logistic_vs_linear, fig.height=3, fig.width=6, fig.cap="Predicted linear (red) and logistic (blue) regression curves.", fig.align='center'----
inverse.logit <- function(x, b){
linear.equation <- b[1] + b[2]*x
1/(1+exp(-linear.equation))
}
base.plot + geom_jitter(position = position_jitter(width = .2, height=.2)) +
geom_abline(intercept=b1[1], slope=b1[2], col="red", size=2) +
stat_function(fun = inverse.logit, args=list(b=b2), color="blue", size=2)
## ----cache=TRUE, warning=FALSE, message=FALSE, fitted_values, fig.height=3.5, fig.width=5, fig.cap="Fitted probabilities of being female and decision threshold (in red).", fig.align='center'----
profiles$p.hat <- fitted(logistic.model)
ggplot(data=profiles, aes(x=p.hat)) +
geom_histogram(binwidth=0.1) +
xlab(expression(hat(p))) +
ylab("Frequency") +
xlim(c(0,1)) +
geom_vline(xintercept=0.5, col="red", size=1.2)
profiles <- mutate(profiles, predicted.female = p.hat >= 0.5)
tally(~is.female + predicted.female, data=profiles)
## ----cache=TRUE, echo=FALSE, warning=FALSE, message=FALSE----------------
# Compute misclassification error rate
perf.table <- table(truth=profiles$is.female, prediction=profiles$predicted.female)
misclass.error <- 1 - sum(diag(perf.table))/sum(perf.table)
## ----echo=TRUE, eval=FALSE, warning=FALSE, message=FALSE-----------------
## library(knitr)
## purl(input="JSE.Rnw", output="JSE.R", quiet=TRUE)