-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
README.Rmd
372 lines (291 loc) · 10.6 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
---
output: github_document
bibliography: inst/REFERENCES.bib
link-citations: yes
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_knit$set(
progress = TRUE,
base.url = "https://raw.githubusercontent.com/ropengov/giscoR/main/"
)
knitr::opts_chunk$set(
collapse = TRUE,
tidy = "styler",
comment = "#>",
fig.path = "img/README-",
warning = FALSE,
message = FALSE,
dev = "ragg_png",
dpi = 300,
out.width = "100%"
)
```
# giscoR <a href='https://ropengov.github.io/giscoR/'><img src="man/figures/logo.png" align="right" height="139"/></a>
<!-- badges: start -->
[![rOG-badge](https://ropengov.github.io/rogtemplate/reference/figures/ropengov-badge.svg)](https://ropengov.org/)
[![CRAN
status](https://www.r-pkg.org/badges/version/giscoR)](https://CRAN.R-project.org/package=giscoR)
[![CRAN
results](https://badges.cranchecks.info/worst/giscoR.svg)](https://cran.r-project.org/web/checks/check_results_giscoR.html)
[![Downloads](https://cranlogs.r-pkg.org/badges/giscoR)](https://CRAN.R-project.org/package=giscoR)
[![r-universe](https://ropengov.r-universe.dev/badges/giscoR)](https://ropengov.r-universe.dev/giscoR)
[![R-CMD-check](https://github.com/rOpenGov/giscoR/actions/workflows/check-full.yaml/badge.svg)](https://github.com/rOpenGov/giscoR/actions/workflows/check-full.yaml)
[![R-hub](https://github.com/rOpenGov/giscoR/actions/workflows/rhub.yaml/badge.svg)](https://github.com/rOpenGov/giscoR/actions/workflows/rhub.yaml)
[![codecov](https://codecov.io/gh/ropengov/giscoR/branch/main/graph/badge.svg)](https://app.codecov.io/gh/ropengov/giscoR)
[![CodeFactor](https://www.codefactor.io/repository/github/ropengov/giscor/badge)](https://www.codefactor.io/repository/github/ropengov/giscor)
[![DOI](https://img.shields.io/badge/DOI-10.32614/CRAN.package.giscoR-blue)](https://doi.org/10.32614/CRAN.package.giscoR)
[![Project Status:
Active](https://www.repostatus.org/badges/latest/active.svg)](https://www.repostatus.org/#active)
<!-- badges: end -->
[**giscoR**](https://ropengov.github.io/giscoR//) is an API package that helps
to retrieve data from [Eurostat - GISCO (the Geographic Information System of
the COmmission)](https://ec.europa.eu/eurostat/web/gisco). It also provides some
lightweight data sets ready to use without downloading.
[GISCO](https://ec.europa.eu/eurostat/web/gisco) is a geospatial open data
repository including several data sets as countries, coastal lines, labels or
[NUTS levels](https://ec.europa.eu/eurostat/web/regions-and-cities/overview).
The data sets are usually provided at several resolution levels
(60M/20M/10M/03M/01M) and in 3 different projections (4326/3035/3857).
Note that the package does not provide metadata on the downloaded files, the
information is available on the [API
webpage](https://gisco-services.ec.europa.eu/distribution/v2/).
Full site with examples and vignettes on <https://ropengov.github.io/giscoR/>
## Installation
Install **giscoR** from [**CRAN**](https://CRAN.R-project.org/package=giscoR):
```{r, eval=FALSE}
install.packages("giscoR")
```
You can install the developing version of **giscoR** with:
```{r, eval=FALSE}
remotes::install_github("rOpenGov/giscoR")
```
Alternatively, you can install **giscoR** using the
[r-universe](https://ropengov.r-universe.dev/giscoR):
```{r, eval=FALSE}
install.packages("giscoR",
repos = c("https://ropengov.r-universe.dev", "https://cloud.r-project.org")
)
```
## Usage
```{r echo=FALSE, results='asis'}
v <- packageVersion("giscoR")
l <- unlist(strsplit(as.character(v), ".", fixed = TRUE))
if (length(l) == 4) {
cat(
"You can have a look to the documentation of",
"the dev version in <https://ropengov.github.io/giscoR/dev/>"
)
}
```
This script highlights some features of **giscoR** :
```{r example}
library(giscoR)
library(sf)
library(dplyr)
# Different resolutions
DNK_res60 <- gisco_get_countries(resolution = "60", country = "DNK") %>%
mutate(res = "60M")
DNK_res20 <-
gisco_get_countries(resolution = "20", country = "DNK") %>%
mutate(res = "20M")
DNK_res10 <-
gisco_get_countries(resolution = "10", country = "DNK") %>%
mutate(res = "10M")
DNK_res03 <-
gisco_get_countries(resolution = "03", country = "DNK") %>%
mutate(res = "03M")
DNK_all <- bind_rows(DNK_res60, DNK_res20, DNK_res10, DNK_res03)
# Plot ggplot2
library(ggplot2)
ggplot(DNK_all) +
geom_sf(fill = "tomato") +
facet_wrap(vars(res)) +
theme_minimal()
# Labels and Lines available
labs <- gisco_get_countries(
spatialtype = "LB",
region = "Africa",
epsg = "3857"
)
coast <- gisco_get_countries(
spatialtype = "COASTL",
epsg = "3857"
)
# For zooming
afr_bbox <- st_bbox(labs)
ggplot(coast) +
geom_sf(col = "deepskyblue4", linewidth = 3) +
geom_sf(data = labs, fill = "springgreen4", col = "darkgoldenrod1", size = 5, shape = 21) +
coord_sf(
xlim = afr_bbox[c("xmin", "xmax")],
ylim = afr_bbox[c("ymin", "ymax")]
)
```
### Labels
An example of a labeled map using **ggplot2**:
```{r labels, fig.height=7, fig.width=6}
ITA <- gisco_get_nuts(country = "Italy", nuts_level = 1)
ggplot(ITA) +
geom_sf() +
geom_sf_text(aes(label = NAME_LATN)) +
theme(axis.title = element_blank())
```
### Thematic maps
An example of a thematic map plotted with the **ggplot2** package. The
information is extracted via the **eurostat** package [@RJ-2017-019]. We would
follow the fantastic approach presented by [Milos
Popovic](https://milospopovic.net/) on [this
post](https://milospopovic.net/how-to-make-choropleth-map-in-r/):
We start by extracting the corresponding geographic data:
```{r euroex, fig.asp=1.1}
# Get shapes
nuts3 <- gisco_get_nuts(
year = "2021",
epsg = "3035",
resolution = "10",
nuts_level = "3"
)
# Group by NUTS by country and convert to lines
country_lines <- nuts3 %>%
group_by(
CNTR_CODE
) %>%
summarise(n = n()) %>%
st_cast("MULTILINESTRING")
```
We now download the data from Eurostat:
```{r}
# Use eurostat
library(eurostat)
popdens <- get_eurostat("demo_r_d3dens") %>%
filter(TIME_PERIOD == "2021-01-01")
```
By last, we merge and manipulate the data for creating the final plot:
```{r thematic, fig.asp=1.1}
# Merge data
nuts3_sf <- nuts3 %>%
left_join(popdens, by = "geo")
nuts3_sf <- nuts3 %>%
left_join(popdens, by = c("NUTS_ID" = "geo"))
# Breaks and labels
br <- c(0, 25, 50, 100, 200, 500, 1000, 2500, 5000, 10000, 30000)
labs <- prettyNum(br[-1], big.mark = ",")
# Label function to be used in the plot, mainly for NAs
labeller_plot <- function(x) {
ifelse(is.na(x), "No Data", x)
}
nuts3_sf <- nuts3_sf %>%
# Cut with labels
mutate(values_cut = cut(values, br, labels = labs))
# Palette
pal <- hcl.colors(length(labs), "Lajolla")
# Plot
ggplot(nuts3_sf) +
geom_sf(aes(fill = values_cut), linewidth = 0, color = NA, alpha = 0.9) +
geom_sf(data = country_lines, col = "black", linewidth = 0.1) +
# Center in Europe: EPSG 3035
coord_sf(
xlim = c(2377294, 7453440),
ylim = c(1313597, 5628510)
) +
# Legends
scale_fill_manual(
values = pal,
# Label for NA
labels = labeller_plot,
drop = FALSE, guide = guide_legend(direction = "horizontal", nrow = 1)
) +
# Theming
theme_void() +
# Theme
theme(
plot.title = element_text(
color = rev(pal)[2], size = rel(1.5),
hjust = 0.5, vjust = -6
),
plot.subtitle = element_text(
color = rev(pal)[2], size = rel(1.25),
hjust = 0.5, vjust = -10, face = "bold"
),
plot.caption = element_text(color = "grey60", hjust = 0.5, vjust = 0),
legend.text = element_text(color = "grey20", hjust = .5),
legend.title = element_text(color = "grey20", hjust = .5),
legend.position = "bottom",
legend.title.position = "top",
legend.text.position = "bottom",
legend.key.height = unit(.5, "line"),
legend.key.width = unit(2.5, "line")
) +
# Annotate and labs
labs(
title = "Population density in 2021",
subtitle = "NUTS-3 level",
fill = "people per sq. kilometer",
caption = paste0(
"Source: Eurostat, ", gisco_attributions(),
"\nBased on Milos Popovic: ",
"https://milospopovic.net/how-to-make-choropleth-map-in-r/"
)
)
```
## A note on caching
Some data sets (as Local Administrative Units - LAU, or high-resolution files)
may have a size larger than 50MB. You can use **giscoR** to create your own
local repository at a given local directory passing the following function:
```{r, eval=FALSE}
gisco_set_cache_dir("./path/to/location")
```
You can also download manually the files (`.geojson` format) and store them on
your local directory.
## Recommended packages
### API data packages
- **eurostat** [@RJ-2017-019]: This is an API package that provides access to
open data from Eurostat.
### Plotting **sf** objects
Some packages recommended for visualization are:
- [**tmap**](https://r-tmap.github.io/tmap/)
- [**ggplot2**](https://github.com/tidyverse/ggplot2) +
[**ggspatial**](https://github.com/paleolimbot/ggspatial) +
[**tidyterra**](https://dieghernan.github.io/tidyterra/)
- [**mapsf**](https://riatelab.github.io/mapsf/)
- [**leaflet**](https://rstudio.github.io/leaflet/)
## Contribute
Check the GitHub page for [source code](https://github.com/rOpenGov/giscoR/).
Contributions are very welcome:
- [Use issue tracker](https://github.com/rOpenGov/giscoR/issues) for feedback
and bug reports.
- [Send pull requests](https://github.com/rOpenGov/giscoR/)
- [Star us on the GitHub page](https://github.com/rOpenGov/giscoR)
## Citation
```{r echo=FALSE, results='asis'}
print(citation("giscoR"), bibtex = FALSE)
```
A BibTeX entry for LaTeX users is
```{r echo=FALSE, comment=""}
toBibtex(citation("giscoR"))
```
## Copyright notice
> When data downloaded from this page is used in any printed or electronic
> publication, in addition to any other provisions applicable to the whole
> Eurostat website, data source will have to be acknowledged in the legend of
> the map and in the introductory page of the publication with the following
> copyright notice:
>
> - EN: © EuroGeographics for the administrative boundaries.
> - FR: © EuroGeographics pour les limites administratives.
> - DE: © EuroGeographics bezüglich der Verwaltungsgrenzen.
>
> For publications in languages other than English, French or German, the
> translation of the copyright notice in the language of the publication shall
> be used.
>
> If you intend to use the data commercially, please contact
> [EuroGeographics](https://eurogeographics.org/maps-for-europe/licensing/) for
> information regarding their licence agreements.
>
> *From [GISCO
> Web](https://ec.europa.eu/eurostat/web/gisco/geodata/statistical-units)*
## Disclaimer
This package is in no way officially related to or endorsed by Eurostat.
## References