-
Notifications
You must be signed in to change notification settings - Fork 0
/
getTraj_simple.py
76 lines (60 loc) · 2.23 KB
/
getTraj_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
__author__ = 'martin'
def getTraj_simple(start_planet, arrive_planet, tlaunch, tarrive, N):
'''
Finds a trajectory between two objects orbiting the Sun
USAGE: traj = getTraj(K1, K2, tlaunch, tarrive)
K: array of object parameters.
epoch: epoch of Keplerian orbital elements (JD)
a: semimajor axis (AU)
e: eccentricity (none)
i: inclination (deg)
om: longitude of the ascending node (deg)
w: argument of perihelion (deg)
ma: mean anomaly at epoch (deg)
mass: mass of object (kg)
r: radius of object (m)
sr: safe radius to approach object (m)
K1: [epoch1,a1,e1,i1,om1,w1,ma1,mass1,r1,sr1]
K2: [epoch2,a2,e2,i2,om2,w2,ma2,mass2,r2,sr2]
tlaunch: launch time (JD)
tarrive: arrival time (JD)
N: number of points in calculated trajectory
'''
import numpy as np
from PyKEP import epoch, DAY2SEC, SEC2DAY, AU, DEG2RAD, MU_SUN, planet, lambert_problem, propagate_lagrangian, fb_vel
# Create PyKEP epoch objects and calculate flight time
t1 = epoch(tlaunch)
t2 = epoch(tarrive)
dt = (tarrive - tlaunch) * DAY2SEC
rev=0 #number of revolutions before intercept
OBJ1 = planet.jpl_lp(start_planet)
OBJ2 = planet.jpl_lp(arrive_planet) # Calculate location of objects in flight path
r1, v1 = OBJ1.eph(t1)
r2, v2 = OBJ2.eph(t2)
#Find trajectory
l = lambert_problem(r1, r2, dt, MU_SUN)
#extract relevant information from solution
r = l.get_r1()
v = l.get_v1()[0]
mu = l.get_mu()
#define the integration time
dtn = dt / (N - 1)
dtn_days = dtn * SEC2DAY
#alocate the cartesian components for r
t = np.array([0.0] * N)
x = np.array([0.0] * N)
y = np.array([0.0] * N)
z = np.array([0.0] * N)
#calculate the spacecraft position at each dt
for i in range(N):
t[i] = tlaunch + dtn_days * i
x[i] = r[0] / AU
y[i] = r[1] / AU
z[i] = r[2] / AU
r, v = propagate_lagrangian(r, v, dtn, mu)
#traj = [t, x, y, z]
vin=l.get_v1()[rev]
vout=l.get_v2()[rev]
dV=fb_vel(vin,vout,planet.jpl_lp(arrive_planet))
#dV=np.sqrt( np.square(vout[0])+np.square(vout[1])+np.square(vout[2]))-np.sqrt( np.square(vin[0])+np.square(vin[1])+np.square(vin[2]))
return dV