-
Notifications
You must be signed in to change notification settings - Fork 0
/
solarSystem.html
628 lines (568 loc) · 21.9 KB
/
solarSystem.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
<!DOCTYPE html>
<html>
<head lang="en">
<meta charset="UTF-8">
<title></title>
<!-- for cosmosium webGL scene(s) -->
<script src="js/vendor/Detector.js"></script>
</head>
<body width="100%" height="100%">
<div class="canvas" id="solarSystem" width="100%" height="100%"></div>
<!-- SCRIPTS -->
<script src="js/jquery-1.10.2.min.js"></script>
<script src="js/vendor/three.min.js"></script>
<script src="js/vendor/three.Extras.js"></script>
<script src="js/vendor/OrbitControls.js"></script>
<script src="js/canvases/util.js"></script>
<script src="js/canvases/ellipse.js"></script>
<script src="js/canvases/ephemeris.js"></script>
<script type="application/x-glsl" id="asteroid-vertex">
// GLSL textureless classic 3D noise "cnoise",
// with an RSL-style periodic variant "pnoise".
// Author: Stefan Gustavson (stefan.gustavson@liu.se)
// Version: 2011-10-11
//
// Many thanks to Ian McEwan of Ashima Arts for the
// ideas for permutation and gradient selection.
//
// Copyright (c) 2011 Stefan Gustavson. All rights reserved.
// Distributed under the MIT license. See LICENSE file.
// https://github.com/ashima/webgl-noise
//
vec3 mod289(vec3 x)
{
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 mod289(vec4 x)
{
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 permute(vec4 x)
{
return mod289(((x*34.0)+1.0)*x);
}
vec4 taylorInvSqrt(vec4 r)
{
return 1.79284291400159 - 0.85373472095314 * r;
}
vec3 fade(vec3 t) {
return t*t*t*(t*(t*6.0-15.0)+10.0);
}
// Classic Perlin noise
float cnoise(vec3 P)
{
vec3 Pi0 = floor(P); // Integer part for indexing
vec3 Pi1 = Pi0 + vec3(1.0); // Integer part + 1
Pi0 = mod289(Pi0);
Pi1 = mod289(Pi1);
vec3 Pf0 = fract(P); // Fractional part for interpolation
vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
vec4 iy = vec4(Pi0.yy, Pi1.yy);
vec4 iz0 = Pi0.zzzz;
vec4 iz1 = Pi1.zzzz;
vec4 ixy = permute(permute(ix) + iy);
vec4 ixy0 = permute(ixy + iz0);
vec4 ixy1 = permute(ixy + iz1);
vec4 gx0 = ixy0 * (1.0 / 7.0);
vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
gx0 = fract(gx0);
vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
vec4 sz0 = step(gz0, vec4(0.0));
gx0 -= sz0 * (step(0.0, gx0) - 0.5);
gy0 -= sz0 * (step(0.0, gy0) - 0.5);
vec4 gx1 = ixy1 * (1.0 / 7.0);
vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
gx1 = fract(gx1);
vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
vec4 sz1 = step(gz1, vec4(0.0));
gx1 -= sz1 * (step(0.0, gx1) - 0.5);
gy1 -= sz1 * (step(0.0, gy1) - 0.5);
vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);
vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
g000 *= norm0.x;
g010 *= norm0.y;
g100 *= norm0.z;
g110 *= norm0.w;
vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
g001 *= norm1.x;
g011 *= norm1.y;
g101 *= norm1.z;
g111 *= norm1.w;
float n000 = dot(g000, Pf0);
float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
float n111 = dot(g111, Pf1);
vec3 fade_xyz = fade(Pf0);
vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
return 2.2 * n_xyz;
}
// Classic Perlin noise, periodic variant
float pnoise(vec3 P, vec3 rep)
{
vec3 Pi0 = mod(floor(P), rep); // Integer part, modulo period
vec3 Pi1 = mod(Pi0 + vec3(1.0), rep); // Integer part + 1, mod period
Pi0 = mod289(Pi0);
Pi1 = mod289(Pi1);
vec3 Pf0 = fract(P); // Fractional part for interpolation
vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
vec4 iy = vec4(Pi0.yy, Pi1.yy);
vec4 iz0 = Pi0.zzzz;
vec4 iz1 = Pi1.zzzz;
vec4 ixy = permute(permute(ix) + iy);
vec4 ixy0 = permute(ixy + iz0);
vec4 ixy1 = permute(ixy + iz1);
vec4 gx0 = ixy0 * (1.0 / 7.0);
vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
gx0 = fract(gx0);
vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
vec4 sz0 = step(gz0, vec4(0.0));
gx0 -= sz0 * (step(0.0, gx0) - 0.5);
gy0 -= sz0 * (step(0.0, gy0) - 0.5);
vec4 gx1 = ixy1 * (1.0 / 7.0);
vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
gx1 = fract(gx1);
vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
vec4 sz1 = step(gz1, vec4(0.0));
gx1 -= sz1 * (step(0.0, gx1) - 0.5);
gy1 -= sz1 * (step(0.0, gy1) - 0.5);
vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);
vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
g000 *= norm0.x;
g010 *= norm0.y;
g100 *= norm0.z;
g110 *= norm0.w;
vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
g001 *= norm1.x;
g011 *= norm1.y;
g101 *= norm1.z;
g111 *= norm1.w;
float n000 = dot(g000, Pf0);
float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
float n111 = dot(g111, Pf1);
vec3 fade_xyz = fade(Pf0);
vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
return 2.2 * n_xyz;
}
//varying vec3 vLightFront; //(already defined below)
//varying vec2 vUv; //(already defined below)
varying float noise;
float turbulence( vec3 p ) {
float w = 100.0;
float t = -.5;
for (float f = 1.0 ; f <= 10.0 ; f++ ){
float power = pow( 2.0, f );
t += abs( pnoise( vec3( power * p ), vec3( 10.0, 10.0, 10.0 ) ) / power );
}
return t;
}
#define LAMBERT
varying vec3 vLightFront;
#ifdef DOUBLE_SIDED
varying vec3 vLightBack;
#endif
#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP )
varying vec2 vUv;
uniform vec4 offsetRepeat;
#endif
#ifdef USE_LIGHTMAP
varying vec2 vUv2;
#endif
#if defined( USE_ENVMAP ) && ! defined( USE_BUMPMAP ) && ! defined( USE_NORMALMAP )
varying vec3 vReflect;
uniform float refractionRatio;
uniform bool useRefract;
#endif
uniform vec3 ambient;
uniform vec3 diffuse;
uniform vec3 emissive;
uniform vec3 ambientLightColor;
#if MAX_DIR_LIGHTS > 0
uniform vec3 directionalLightColor[ MAX_DIR_LIGHTS ];
uniform vec3 directionalLightDirection[ MAX_DIR_LIGHTS ];
#endif
#if MAX_HEMI_LIGHTS > 0
uniform vec3 hemisphereLightSkyColor[ MAX_HEMI_LIGHTS ];
uniform vec3 hemisphereLightGroundColor[ MAX_HEMI_LIGHTS ];
uniform vec3 hemisphereLightDirection[ MAX_HEMI_LIGHTS ];
#endif
#if MAX_POINT_LIGHTS > 0
uniform vec3 pointLightColor[ MAX_POINT_LIGHTS ];
uniform vec3 pointLightPosition[ MAX_POINT_LIGHTS ];
uniform float pointLightDistance[ MAX_POINT_LIGHTS ];
#endif
#if MAX_SPOT_LIGHTS > 0
uniform vec3 spotLightColor[ MAX_SPOT_LIGHTS ];
uniform vec3 spotLightPosition[ MAX_SPOT_LIGHTS ];
uniform vec3 spotLightDirection[ MAX_SPOT_LIGHTS ];
uniform float spotLightDistance[ MAX_SPOT_LIGHTS ];
uniform float spotLightAngleCos[ MAX_SPOT_LIGHTS ];
uniform float spotLightExponent[ MAX_SPOT_LIGHTS ];
#endif
#ifdef WRAP_AROUND
uniform vec3 wrapRGB;
#endif
#ifdef USE_COLOR
varying vec3 vColor;
#endif
#ifdef USE_MORPHTARGETS
#ifndef USE_MORPHNORMALS
uniform float morphTargetInfluences[ 8 ];
#else
uniform float morphTargetInfluences[ 4 ];
#endif
#endif
#ifdef USE_SKINNING
#ifdef BONE_TEXTURE
uniform sampler2D boneTexture;
uniform int boneTextureWidth;
uniform int boneTextureHeight;
mat4 getBoneMatrix( const in float i ) {
float j = i * 4.0;
float x = mod( j, float( boneTextureWidth ) );
float y = floor( j / float( boneTextureWidth ) );
float dx = 1.0 / float( boneTextureWidth );
float dy = 1.0 / float( boneTextureHeight );
y = dy * ( y + 0.5 );
vec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );
vec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );
vec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );
vec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );
mat4 bone = mat4( v1, v2, v3, v4 );
return bone;
}
#else
uniform mat4 boneGlobalMatrices[ MAX_BONES ];
mat4 getBoneMatrix( const in float i ) {
mat4 bone = boneGlobalMatrices[ int(i) ];
return bone;
}
#endif
#endif
#ifdef USE_SHADOWMAP
varying vec4 vShadowCoord[ MAX_SHADOWS ];
uniform mat4 shadowMatrix[ MAX_SHADOWS ];
#endif
void main() {
#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP )
vUv = uv * offsetRepeat.zw + offsetRepeat.xy;
#endif
#ifdef USE_LIGHTMAP
vUv2 = uv2;
#endif
#ifdef USE_COLOR
#ifdef GAMMA_INPUT
vColor = color * color;
#else
vColor = color;
#endif
#endif
#ifdef USE_MORPHNORMALS
vec3 morphedNormal = vec3( 0.0 );
morphedNormal += ( morphNormal0 - normal ) * morphTargetInfluences[ 0 ];
morphedNormal += ( morphNormal1 - normal ) * morphTargetInfluences[ 1 ];
morphedNormal += ( morphNormal2 - normal ) * morphTargetInfluences[ 2 ];
morphedNormal += ( morphNormal3 - normal ) * morphTargetInfluences[ 3 ];
morphedNormal += normal;
#endif
#ifdef USE_SKINNING
mat4 boneMatX = getBoneMatrix( skinIndex.x );
mat4 boneMatY = getBoneMatrix( skinIndex.y );
mat4 boneMatZ = getBoneMatrix( skinIndex.z );
mat4 boneMatW = getBoneMatrix( skinIndex.w );
#endif
#ifdef USE_SKINNING
mat4 skinMatrix = skinWeight.x * boneMatX;
skinMatrix += skinWeight.y * boneMatY;
#ifdef USE_MORPHNORMALS
vec4 skinnedNormal = skinMatrix * vec4( morphedNormal, 0.0 );
#else
vec4 skinnedNormal = skinMatrix * vec4( normal, 0.0 );
#endif
#endif
vec3 objectNormal;
#ifdef USE_SKINNING
objectNormal = skinnedNormal.xyz;
#endif
#if !defined( USE_SKINNING ) && defined( USE_MORPHNORMALS )
objectNormal = morphedNormal;
#endif
#if !defined( USE_SKINNING ) && ! defined( USE_MORPHNORMALS )
objectNormal = normal;
#endif
#ifdef FLIP_SIDED
objectNormal = -objectNormal;
#endif
vec3 transformedNormal = normalMatrix * objectNormal;
#ifdef USE_MORPHTARGETS
vec3 morphed = vec3( 0.0 );
morphed += ( morphTarget0 - position ) * morphTargetInfluences[ 0 ];
morphed += ( morphTarget1 - position ) * morphTargetInfluences[ 1 ];
morphed += ( morphTarget2 - position ) * morphTargetInfluences[ 2 ];
morphed += ( morphTarget3 - position ) * morphTargetInfluences[ 3 ];
#ifndef USE_MORPHNORMALS
morphed += ( morphTarget4 - position ) * morphTargetInfluences[ 4 ];
morphed += ( morphTarget5 - position ) * morphTargetInfluences[ 5 ];
morphed += ( morphTarget6 - position ) * morphTargetInfluences[ 6 ];
morphed += ( morphTarget7 - position ) * morphTargetInfluences[ 7 ];
#endif
morphed += position;
#endif
#ifdef USE_SKINNING
#ifdef USE_MORPHTARGETS
vec4 skinVertex = vec4( morphed, 1.0 );
#else
vec4 skinVertex = vec4( position, 1.0 );
#endif
vec4 skinned = boneMatX * skinVertex * skinWeight.x;
skinned += boneMatY * skinVertex * skinWeight.y;
skinned += boneMatZ * skinVertex * skinWeight.z;
skinned += boneMatW * skinVertex * skinWeight.w;
#endif
vec4 mvPosition;
#ifdef USE_SKINNING
mvPosition = modelViewMatrix * skinned;
#endif
#if !defined( USE_SKINNING ) && defined( USE_MORPHTARGETS )
mvPosition = modelViewMatrix * vec4( morphed, 1.0 );
#endif
#if !defined( USE_SKINNING ) && ! defined( USE_MORPHTARGETS )
mvPosition = modelViewMatrix * vec4( position, 1.0 );
#endif
// begin noise
// get a turbulent 3d noise using the normal, normal to high freq
noise = 4.0 * -.10 * turbulence( .5 * normal );
// get a 3d noise using the position, low frequency
float b = 5.0 * pnoise( 0.05 * position, vec3( 100.0 ) );
// compose both noises
float displacement = - 3. * noise + b;
// move the position along the normal and transform it
vec3 newPosition = position + normal * displacement;
gl_Position = projectionMatrix * modelViewMatrix * vec4( newPosition, 1.0 );
// end noise
//gl_Position = projectionMatrix * mvPosition; // commenting this out -- if we want default no-noise, use this instead
#if defined( USE_ENVMAP ) || defined( PHONG ) || defined( LAMBERT ) || defined ( USE_SHADOWMAP )
#ifdef USE_SKINNING
vec4 worldPosition = modelMatrix * skinned;
#endif
#if defined( USE_MORPHTARGETS ) && ! defined( USE_SKINNING )
vec4 worldPosition = modelMatrix * vec4( morphed, 1.0 );
#endif
#if ! defined( USE_MORPHTARGETS ) && ! defined( USE_SKINNING )
vec4 worldPosition = modelMatrix * vec4( position, 1.0 );
#endif
#endif
#if defined( USE_ENVMAP ) && ! defined( USE_BUMPMAP ) && ! defined( USE_NORMALMAP )
vec3 worldNormal = mat3( modelMatrix[ 0 ].xyz, modelMatrix[ 1 ].xyz, modelMatrix[ 2 ].xyz ) * objectNormal;
worldNormal = normalize( worldNormal );
vec3 cameraToVertex = normalize( worldPosition.xyz - cameraPosition );
if ( useRefract ) {
vReflect = refract( cameraToVertex, worldNormal, refractionRatio );
} else {
vReflect = reflect( cameraToVertex, worldNormal );
}
#endif
vLightFront = vec3( 0.0 );
#ifdef DOUBLE_SIDED
vLightBack = vec3( 0.0 );
#endif
transformedNormal = normalize( transformedNormal );
#if MAX_DIR_LIGHTS > 0
for( int i = 0; i < MAX_DIR_LIGHTS; i ++ ) {
vec4 lDirection = viewMatrix * vec4( directionalLightDirection[ i ], 0.0 );
vec3 dirVector = normalize( lDirection.xyz );
float dotProduct = dot( transformedNormal, dirVector );
vec3 directionalLightWeighting = vec3( max( dotProduct, 0.0 ) );
#ifdef DOUBLE_SIDED
vec3 directionalLightWeightingBack = vec3( max( -dotProduct, 0.0 ) );
#ifdef WRAP_AROUND
vec3 directionalLightWeightingHalfBack = vec3( max( -0.5 * dotProduct + 0.5, 0.0 ) );
#endif
#endif
#ifdef WRAP_AROUND
vec3 directionalLightWeightingHalf = vec3( max( 0.5 * dotProduct + 0.5, 0.0 ) );
directionalLightWeighting = mix( directionalLightWeighting, directionalLightWeightingHalf, wrapRGB );
#ifdef DOUBLE_SIDED
directionalLightWeightingBack = mix( directionalLightWeightingBack, directionalLightWeightingHalfBack, wrapRGB );
#endif
#endif
vLightFront += directionalLightColor[ i ] * directionalLightWeighting;
#ifdef DOUBLE_SIDED
vLightBack += directionalLightColor[ i ] * directionalLightWeightingBack;
#endif
}
#endif
#if MAX_POINT_LIGHTS > 0
for( int i = 0; i < MAX_POINT_LIGHTS; i ++ ) {
vec4 lPosition = viewMatrix * vec4( pointLightPosition[ i ], 1.0 );
vec3 lVector = lPosition.xyz - mvPosition.xyz;
float lDistance = 1.0;
if ( pointLightDistance[ i ] > 0.0 )
lDistance = 1.0 - min( ( length( lVector ) / pointLightDistance[ i ] ), 1.0 );
lVector = normalize( lVector );
float dotProduct = dot( transformedNormal, lVector );
vec3 pointLightWeighting = vec3( max( dotProduct, 0.0 ) );
#ifdef DOUBLE_SIDED
vec3 pointLightWeightingBack = vec3( max( -dotProduct, 0.0 ) );
#ifdef WRAP_AROUND
vec3 pointLightWeightingHalfBack = vec3( max( -0.5 * dotProduct + 0.5, 0.0 ) );
#endif
#endif
#ifdef WRAP_AROUND
vec3 pointLightWeightingHalf = vec3( max( 0.5 * dotProduct + 0.5, 0.0 ) );
pointLightWeighting = mix( pointLightWeighting, pointLightWeightingHalf, wrapRGB );
#ifdef DOUBLE_SIDED
pointLightWeightingBack = mix( pointLightWeightingBack, pointLightWeightingHalfBack, wrapRGB );
#endif
#endif
vLightFront += pointLightColor[ i ] * pointLightWeighting * lDistance;
#ifdef DOUBLE_SIDED
vLightBack += pointLightColor[ i ] * pointLightWeightingBack * lDistance;
#endif
}
#endif
#if MAX_SPOT_LIGHTS > 0
for( int i = 0; i < MAX_SPOT_LIGHTS; i ++ ) {
vec4 lPosition = viewMatrix * vec4( spotLightPosition[ i ], 1.0 );
vec3 lVector = lPosition.xyz - mvPosition.xyz;
float spotEffect = dot( spotLightDirection[ i ], normalize( spotLightPosition[ i ] - worldPosition.xyz ) );
if ( spotEffect > spotLightAngleCos[ i ] ) {
spotEffect = max( pow( spotEffect, spotLightExponent[ i ] ), 0.0 );
float lDistance = 1.0;
if ( spotLightDistance[ i ] > 0.0 )
lDistance = 1.0 - min( ( length( lVector ) / spotLightDistance[ i ] ), 1.0 );
lVector = normalize( lVector );
float dotProduct = dot( transformedNormal, lVector );
vec3 spotLightWeighting = vec3( max( dotProduct, 0.0 ) );
#ifdef DOUBLE_SIDED
vec3 spotLightWeightingBack = vec3( max( -dotProduct, 0.0 ) );
#ifdef WRAP_AROUND
vec3 spotLightWeightingHalfBack = vec3( max( -0.5 * dotProduct + 0.5, 0.0 ) );
#endif
#endif
#ifdef WRAP_AROUND
vec3 spotLightWeightingHalf = vec3( max( 0.5 * dotProduct + 0.5, 0.0 ) );
spotLightWeighting = mix( spotLightWeighting, spotLightWeightingHalf, wrapRGB );
#ifdef DOUBLE_SIDED
spotLightWeightingBack = mix( spotLightWeightingBack, spotLightWeightingHalfBack, wrapRGB );
#endif
#endif
vLightFront += spotLightColor[ i ] * spotLightWeighting * lDistance * spotEffect;
#ifdef DOUBLE_SIDED
vLightBack += spotLightColor[ i ] * spotLightWeightingBack * lDistance * spotEffect;
#endif
}
}
#endif
#if MAX_HEMI_LIGHTS > 0
for( int i = 0; i < MAX_HEMI_LIGHTS; i ++ ) {
vec4 lDirection = viewMatrix * vec4( hemisphereLightDirection[ i ], 0.0 );
vec3 lVector = normalize( lDirection.xyz );
float dotProduct = dot( transformedNormal, lVector );
float hemiDiffuseWeight = 0.5 * dotProduct + 0.5;
float hemiDiffuseWeightBack = -0.5 * dotProduct + 0.5;
vLightFront += mix( hemisphereLightGroundColor[ i ], hemisphereLightSkyColor[ i ], hemiDiffuseWeight );
#ifdef DOUBLE_SIDED
vLightBack += mix( hemisphereLightGroundColor[ i ], hemisphereLightSkyColor[ i ], hemiDiffuseWeightBack );
#endif
}
#endif
vLightFront = vLightFront * diffuse + ambient * ambientLightColor + emissive;
#ifdef DOUBLE_SIDED
vLightBack = vLightBack * diffuse + ambient * ambientLightColor + emissive;
#endif
#ifdef USE_SHADOWMAP
for( int i = 0; i < MAX_SHADOWS; i ++ ) {
vShadowCoord[ i ] = shadowMatrix[ i ] * worldPosition;
}
#endif
}
</script>
<script type="application/x-glsl" id="sky-vertex">
varying vec2 vUV;
void main() {
vUV = uv;
vec4 pos = vec4(position, 1.0);
gl_Position = projectionMatrix * modelViewMatrix * pos;
}
</script>
<script type="application/x-glsl" id="sky-fragment">
uniform sampler2D texture;
varying vec2 vUV;
void main() {
vec4 sample = texture2D(texture, vUV);
gl_FragColor = vec4(sample.xyz, sample.w);
}
</script>
<script type="application/x-glsl" id="sun-vertex">
varying vec2 vUV;
void main() {
vUV = uv;
vec4 pos = vec4(position, 1.0);
gl_Position = projectionMatrix * modelViewMatrix * pos;
}
</script>
<script type="application/x-glsl" id="sun-fragment">
uniform sampler2D texture;
uniform sampler2D glow;
uniform float time;
varying vec2 vUV;
void main() {
float glowCycle = 15.0;
float shiftCycle = 10.0;
float timeValue = mod(time, glowCycle);
float remainingTime = glowCycle - timeValue;
vec4 sample = texture2D(texture, vUV);
vec4 sample2 = texture2D(glow, vUV);
float altW = 0.1;
float rIntensity = 0.3;
float gIntensity = 1.0;
if (timeValue > (glowCycle/2.0)) {
timeValue = remainingTime;
}
sample.x = mix(texture2D(texture, vUV).x - 0.02, texture2D(texture, vUV).x + 0.05,
timeValue * rIntensity * texture2D(texture, vUV).x);
sample.y = mix(texture2D(texture, vUV).y + 0.1, texture2D(texture, vUV).y + 0.2,
timeValue * gIntensity * texture2D(texture, vUV).y);
timeValue = mod(time, shiftCycle);
remainingTime = shiftCycle - timeValue;
if (timeValue > (shiftCycle/2.0)) {
timeValue = remainingTime;
}
gl_FragColor = vec4(sample.xyz, sample.w);
}
</script>
<script src="js/canvases/mission_render.js" type="text/javascript"></script>
<script src="js/canvases/mission_scene.js" type="text/javascript"></script>
<script src="js/canvases/mission_UI.js" type="text/javascript"></script>
<script src="js/canvases/mission_main.js" type="text/javascript"></script>
</body>
</html>