-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
26 lines (21 loc) · 1012 Bytes
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
from keras.models import load_model # TensorFlow is required for Keras to work
from PIL import Image, ImageOps # Install pillow instead of PIL
import numpy as np
def get_class(model_path, labels_path, image_path):
np.set_printoptions(suppress=True)
model = load_model(model_path, compile=False)
class_names = open(labels_path, "r").readlines()
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
image = Image.open(image_path).convert("RGB")
size = (224, 224)
image = ImageOps.fit(image, size, Image.Resampling.LANCZOS)
image_array = np.asarray(image)
normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1
data[0] = normalized_image_array
prediction = model.predict(data)
index = np.argmax(prediction)
class_name = class_names[index]
confidence_score = prediction[0][index]
print("Class:", class_name[2:], end="")
print("Confidence Score:", confidence_score)
return class_name[2:]