-
Notifications
You must be signed in to change notification settings - Fork 1
/
Nano33BLE_AHRS.ino
875 lines (765 loc) · 40.3 KB
/
Nano33BLE_AHRS.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
/* Arduino Nano 33 BLE Sensor 9dof and baro Basic Example Code
Based on Kris Winer's code
date: March 10th, 2021
Demonstrate basic LSM9DS1 functionality including parameterizing the register addresses, initializing the sensor,
getting properly scaled accelerometer, gyroscope, and magnetometer data out. Addition of 9 DoF sensor fusion using
open source Madgwick and Mahony filter algorithms. Sketch intended to run on the 3.3 V 64 MHz Nano 33 BLE Sensor
Note: The LSM9DS1 is an I2C sensor and can use the Arduino Wire library.
*/
#include "Wire.h"
#include "IO_LPS22HB.h"
IO_LPS22HB lps22hb;
//weird uart Serial1 speed setting for nRF52840 see https://forum.arduino.cc/index.php?topic=686659.0
//and proceedures to access hardware uart2 if needed https://github.com/arduino/ArduinoCore-nRF528x-mbedos/issues/38
#define UARTE0_BASE_ADDR 0x40002000 // As per nRF52840 Product spec - UARTE
#define UART_BAUDRATE_REG_OFFSET 0x524 // As per nRF52840 Product spec - UARTE
#define UART0_BAUDRATE_REGISTER (*(( unsigned int *)(UARTE0_BASE_ADDR + UART_BAUDRATE_REG_OFFSET)))
float seaLevelPressure = 1015.4; //average sea level pressure is 1013.25
float Pressure; // pressure in mbars
float pressureArray[10];
// See also LSM9DS1 Register Map and Descriptions, http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/DM00103319.pdf
//
// Accelerometer and Gyroscope registers
#define LSM9DS1XG_ACT_THS 0x04
#define LSM9DS1XG_ACT_DUR 0x05
#define LSM9DS1XG_INT_GEN_CFG_XL 0x06
#define LSM9DS1XG_INT_GEN_THS_X_XL 0x07
#define LSM9DS1XG_INT_GEN_THS_Y_XL 0x08
#define LSM9DS1XG_INT_GEN_THS_Z_XL 0x09
#define LSM9DS1XG_INT_GEN_DUR_XL 0x0A
#define LSM9DS1XG_REFERENCE_G 0x0B
#define LSM9DS1XG_INT1_CTRL 0x0C
#define LSM9DS1XG_INT2_CTRL 0x0D
#define LSM9DS1XG_WHO_AM_I 0x0F // should return 0x68
#define LSM9DS1XG_CTRL_REG1_G 0x10
#define LSM9DS1XG_CTRL_REG2_G 0x11
#define LSM9DS1XG_CTRL_REG3_G 0x12
#define LSM9DS1XG_ORIENT_CFG_G 0x13
#define LSM9DS1XG_INT_GEN_SRC_G 0x14
#define LSM9DS1XG_OUT_TEMP_L 0x15
#define LSM9DS1XG_OUT_TEMP_H 0x16
#define LSM9DS1XG_STATUS_REG 0x17
#define LSM9DS1XG_OUT_X_L_G 0x18
#define LSM9DS1XG_OUT_X_H_G 0x19
#define LSM9DS1XG_OUT_Y_L_G 0x1A
#define LSM9DS1XG_OUT_Y_H_G 0x1B
#define LSM9DS1XG_OUT_Z_L_G 0x1C
#define LSM9DS1XG_OUT_Z_H_G 0x1D
#define LSM9DS1XG_CTRL_REG4 0x1E
#define LSM9DS1XG_CTRL_REG5_XL 0x1F
#define LSM9DS1XG_CTRL_REG6_XL 0x20
#define LSM9DS1XG_CTRL_REG7_XL 0x21
#define LSM9DS1XG_CTRL_REG8 0x22
#define LSM9DS1XG_CTRL_REG9 0x23
#define LSM9DS1XG_CTRL_REG10 0x24
#define LSM9DS1XG_INT_GEN_SRC_XL 0x26
#define LSM9DS1XG_OUT_X_L_XL 0x28
#define LSM9DS1XG_OUT_X_H_XL 0x29
#define LSM9DS1XG_OUT_Y_L_XL 0x2A
#define LSM9DS1XG_OUT_Y_H_XL 0x2B
#define LSM9DS1XG_OUT_Z_L_XL 0x2C
#define LSM9DS1XG_OUT_Z_H_XL 0x2D
#define LSM9DS1XG_FIFO_CTRL 0x2E
#define LSM9DS1XG_FIFO_SRC 0x2F
#define LSM9DS1XG_INT_GEN_CFG_G 0x30
#define LSM9DS1XG_INT_GEN_THS_XH_G 0x31
#define LSM9DS1XG_INT_GEN_THS_XL_G 0x32
#define LSM9DS1XG_INT_GEN_THS_YH_G 0x33
#define LSM9DS1XG_INT_GEN_THS_YL_G 0x34
#define LSM9DS1XG_INT_GEN_THS_ZH_G 0x35
#define LSM9DS1XG_INT_GEN_THS_ZL_G 0x36
#define LSM9DS1XG_INT_GEN_DUR_G 0x37
//
// Magnetometer registers
#define LSM9DS1M_OFFSET_X_REG_L_M 0x05
#define LSM9DS1M_OFFSET_X_REG_H_M 0x06
#define LSM9DS1M_OFFSET_Y_REG_L_M 0x07
#define LSM9DS1M_OFFSET_Y_REG_H_M 0x08
#define LSM9DS1M_OFFSET_Z_REG_L_M 0x09
#define LSM9DS1M_OFFSET_Z_REG_H_M 0x0A
#define LSM9DS1M_WHO_AM_I 0x0F // should be 0x3D
#define LSM9DS1M_CTRL_REG1_M 0x20
#define LSM9DS1M_CTRL_REG2_M 0x21
#define LSM9DS1M_CTRL_REG3_M 0x22
#define LSM9DS1M_CTRL_REG4_M 0x23
#define LSM9DS1M_CTRL_REG5_M 0x24
#define LSM9DS1M_STATUS_REG_M 0x27
#define LSM9DS1M_OUT_X_L_M 0x28
#define LSM9DS1M_OUT_X_H_M 0x29
#define LSM9DS1M_OUT_Y_L_M 0x2A
#define LSM9DS1M_OUT_Y_H_M 0x2B
#define LSM9DS1M_OUT_Z_L_M 0x2C
#define LSM9DS1M_OUT_Z_H_M 0x2D
#define LSM9DS1M_INT_CFG_M 0x30
#define LSM9DS1M_INT_SRC_M 0x31
#define LSM9DS1M_INT_THS_L_M 0x32
#define LSM9DS1M_INT_THS_H_M 0x33
// Using the LSM9DS1+LPS22HB Nano 33 BLE
// Seven-bit device address of accel/gyro is 110101 for ADO = 0 and 110101 for ADO = 1
#define ADO 1
#if ADO
#define LSM9DS1XG_ADDRESS 0x6B // Device address when ADO = 1
#define LSM9DS1M_ADDRESS 0x1E // Address of magnetometer
#else
#define LSM9DS1XG_ADDRESS 0x6A // Device address when ADO = 0
#define LSM9DS1M_ADDRESS 0x1D // Address of magnetometer
#endif
#define SerialDebug true // set to true to get Serial output for debugging
// Set initial input parameters
enum Ascale { // set of allowable accel full scale settings
AFS_2G = 0,
AFS_16G,
AFS_4G,
AFS_8G
};
enum Aodr { // set of allowable gyro sample rates
AODR_PowerDown = 0,
AODR_10Hz,
AODR_50Hz,
AODR_119Hz,
AODR_238Hz,
AODR_476Hz,
AODR_952Hz
};
enum Abw { // set of allowable accewl bandwidths
ABW_408Hz = 0,
ABW_211Hz,
ABW_105Hz,
ABW_50Hz
};
enum Gscale { // set of allowable gyro full scale settings
GFS_245DPS = 0,
GFS_500DPS,
GFS_NoOp,
GFS_2000DPS
};
enum Godr { // set of allowable gyro sample rates
GODR_PowerDown = 0,
GODR_14_9Hz,
GODR_59_5Hz,
GODR_119Hz,
GODR_238Hz,
GODR_476Hz,
GODR_952Hz
};
enum Gbw { // set of allowable gyro data bandwidths
GBW_low = 0, // 14 Hz at Godr = 238 Hz, 33 Hz at Godr = 952 Hz
GBW_med, // 29 Hz at Godr = 238 Hz, 40 Hz at Godr = 952 Hz
GBW_high, // 63 Hz at Godr = 238 Hz, 58 Hz at Godr = 952 Hz
GBW_highest // 78 Hz at Godr = 238 Hz, 100 Hz at Godr = 952 Hz
};
enum Mscale { // set of allowable mag full scale settings
MFS_4G = 0,
MFS_8G,
MFS_12G,
MFS_16G
};
enum Mmode {
MMode_LowPower = 0,
MMode_MedPerformance,
MMode_HighPerformance,
MMode_UltraHighPerformance
};
enum Modr { // set of allowable mag sample rates
MODR_0_625Hz = 0,
MODR_1_25Hz,
MODR_2_5Hz,
MODR_5Hz,
MODR_10Hz,
MODR_20Hz,
MODR_80Hz
};
#define ADC_256 0x00 // define pressure and temperature conversion rates
#define ADC_512 0x02
#define ADC_1024 0x04
#define ADC_2048 0x06
#define ADC_4096 0x08
#define ADC_D1 0x40
#define ADC_D2 0x50
// Specify sensor full scale
uint8_t OSR = ADC_4096; // set pressure amd temperature oversample rate
uint8_t Gscale = GFS_245DPS; // gyro full scale
uint8_t Godr = GODR_238Hz; // gyro data sample rate
uint8_t Gbw = GBW_med; // gyro data bandwidth
uint8_t Ascale = AFS_2G; // accel full scale
uint8_t Aodr = AODR_238Hz; // accel data sample rate
uint8_t Abw = ABW_50Hz; // accel data bandwidth
uint8_t Mscale = MFS_4G; // mag full scale
uint8_t Modr = MODR_10Hz; // mag data sample rate
uint8_t Mmode = MMode_HighPerformance; // magnetometer operation mode
float aRes, gRes, mRes; // scale resolutions per LSB for the sensors
// Pin definitions
int myLed = 13;
double dT, OFFSET, SENS, T2, OFFSET2, SENS2; // First order and second order corrections for raw S5637 temperature and pressure data
int16_t accelCount[3], gyroCount[3], magCount[3]; // Stores the 16-bit signed accelerometer, gyro, and mag sensor output
float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}, magBias[3] = {0, 0, 0}; // Bias corrections for gyro, accelerometer, and magnetometer
int16_t tempCount; // temperature raw count output
float temperature; // Stores the LSM9DS1gyro internal chip temperature in degrees Celsius
// global constants for 9 DoF fusion and AHRS (Attitude and Heading Reference System)
float GyroMeasError = PI * (40.0f / 180.0f); // gyroscope measurement error in rads/s (start at 40 deg/s)
float GyroMeasDrift = PI * (0.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
// There is a tradeoff in the beta parameter between accuracy and response speed.
// In the original Madgwick study, beta of 0.041 (corresponding to GyroMeasError of 2.7 degrees/s) was found to give optimal accuracy.
// However, with this value, the LSM9SD0 response time is about 10 seconds to a stable initial quaternion.
// Subsequent changes also require a longish lag time to a stable output, not fast enough for a quadcopter or robot car!
// By increasing beta (GyroMeasError) by about a factor of fifteen, the response time constant is reduced to ~2 sec
// I haven't noticed any reduction in solution accuracy. This is essentially the I coefficient in a PID control sense;
// the bigger the feedback coefficient, the faster the solution converges, usually at the expense of accuracy.
// In any case, this is the free parameter in the Madgwick filtering and fusion scheme.
float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
#define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
#define Ki 0.0f
uint32_t delt_t = 0, count = 0, sumCount = 0; // used to control display output rate
float pitch, yaw, roll;
float deltat = 0.0f, sum = 0.0f; // integration interval for both filter schemes
uint32_t lastUpdate = 0, firstUpdate = 0; // used to calculate integration interval
uint32_t Now = 0; // used to calculate integration interval
float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values
float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method
void setup()
{
Wire1.begin();
lps22hb.begin(0x5C); // Startup baro chip NANO33BLE ADDRESS is the same as setting jumper on a dev board
writeByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_CTRL_REG8, 0x05);
writeByte(LSM9DS1M_ADDRESS, LSM9DS1M_CTRL_REG2_M, 0x0c);
delay(100);
Serial.begin(38400);
//Serial1 crsfSerial;
Serial1.begin(4200000);
UART0_BAUDRATE_REGISTER = 0x69489ef; //Serial1.begin(speed) is useless on this chip. Need to do it this way. See Uart defines
// Initialize LED pin
pinMode(myLed, OUTPUT);
digitalWrite(myLed, HIGH);
// Read the WHO_AM_I registers, this is a good test of communication
Serial.println("LSM9DS1 9-axis motion sensor...");
byte c = readByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_WHO_AM_I); // Read WHO_AM_I register for LSM9DS1 accel/gyro
Serial.print("LSM9DS1 accel/gyro"); Serial.print("I AM "); Serial.print(c, HEX); Serial.print(" I should be "); Serial.println(0x68, HEX);
byte d = readByte(LSM9DS1M_ADDRESS, LSM9DS1M_WHO_AM_I); // Read WHO_AM_I register for LSM9DS1 magnetometer
Serial.print("LSM9DS1 magnetometer"); Serial.print("I AM "); Serial.print(d, HEX); Serial.print(" I should be "); Serial.println(0x3D, HEX);
if (c == 0x68 && d == 0x3D) // WHO_AM_I should always be 0x0E for the accel/gyro and 0x3C for the mag
{
Serial.println("LSM9DS1 is online...");
// get sensor resolutions, only need to do this once
getAres();
getGres();
getMres();
Serial.print("accel sensitivity is "); Serial.print(1./(1000.*aRes)); Serial.println(" LSB/mg");
Serial.print("gyro sensitivity is "); Serial.print(1./(1000.*gRes)); Serial.println(" LSB/mdps");
Serial.print("mag sensitivity is "); Serial.print(1./(1000.*mRes)); Serial.println(" LSB/mGauss");
Serial.println("Perform gyro and accel self test");
selftestLSM9DS1(); // check function of gyro and accelerometer via self test
Serial.println(" Calibrate gyro and accel");
accelgyrocalLSM9DS1(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
Serial.println("accel biases (mg)"); Serial.println(1000.*accelBias[0]); Serial.println(1000.*accelBias[1]); Serial.println(1000.*accelBias[2]);
Serial.println("gyro biases (dps)"); Serial.println(gyroBias[0]); Serial.println(gyroBias[1]); Serial.println(gyroBias[2]);
magcalLSM9DS1(magBias);
Serial.println("mag biases (mG)"); Serial.println(1000.*magBias[0]); Serial.println(1000.*magBias[1]); Serial.println(1000.*magBias[2]);
delay(2000); // add delay to see results before serial spew of data
initLSM9DS1();
Serial.println("LSM9DS1 initialized for active data mode...."); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
}
else
{
Serial.print("Could not connect to LSM9DS1: 0x");
Serial.println(c, HEX);
while(1) ; // Loop forever if communication doesn't happen
}
Serial.println("IoThings LPS22HB Arduino Baro Test");
byte who_am_i = lps22hb.whoAmI();
Serial.print("Who Am I? 0x");
Serial.print(who_am_i, HEX);
Serial.println(" (expected: 0xB1)");
}
void loop()
{
if (readByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_STATUS_REG) & 0x01) { // check if new accel data is ready
readAccelData(accelCount); // Read the x/y/z adc values
// Now we'll calculate the accleration value into actual g's
ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
ay = (float)accelCount[1]*aRes - accelBias[1];
az = (float)accelCount[2]*aRes - accelBias[2];
}
if (readByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_STATUS_REG) & 0x02) { // check if new gyro data is ready
readGyroData(gyroCount); // Read the x/y/z adc values
// Calculate the gyro value into actual degrees per second
gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set
gy = (float)gyroCount[1]*gRes - gyroBias[1];
gz = (float)gyroCount[2]*gRes - gyroBias[2];
}
if (readByte(LSM9DS1M_ADDRESS, LSM9DS1M_STATUS_REG_M) & 0x08) { // check if new mag data is ready
readMagData(magCount); // Read the x/y/z adc values
// Calculate the magnetometer values in milliGauss
// Include factory calibration per data sheet and user environmental corrections
mx = (float)magCount[0]*mRes; // - magBias[0]; // get actual magnetometer value, this depends on scale being set
my = (float)magCount[1]*mRes; // - magBias[1];
mz = (float)magCount[2]*mRes; // - magBias[2];
}
Now = micros();
deltat = ((Now - lastUpdate)/1000000.0f); // set integration time by time elapsed since last filter update
lastUpdate = Now;
sum += deltat; // sum for averaging filter update rate
sumCount++;
// Sensors x, y, and z axes of the accelerometer and gyro are aligned. The magnetometer
// the magnetometer z-axis (+ up) is aligned with the z-axis (+ up) of accelerometer and gyro, but the magnetometer
// x-axis is aligned with the -x axis of the gyro and the magnetometer y axis is aligned with the y axis of the gyro!
// We have to make some allowance for this orientation mismatch in feeding the output to the quaternion filter.
// For the LSM9DS1, we have chosen a magnetic rotation that keeps the sensor forward along the x-axis just like
// in the LSM9DS0 sensor. This rotation can be modified to allow any convenient orientation convention.
// This is ok by aircraft orientation standards!
// Pass gyro rate as rad/s
MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, -mx, my, mz);
// MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, -mx, my, mz);
// Serial print and/or display at 0.5 s rate independent of data rates
delt_t = millis() - count;
if (delt_t > 500) { // update LCD once per half-second independent of read rate
if(SerialDebug) {
Serial.print("ax = "); Serial.print((int)1000*ax);
Serial.print(" ay = "); Serial.print((int)1000*ay);
Serial.print(" az = "); Serial.print((int)1000*az); Serial.println(" mg");
Serial.print("gx = "); Serial.print( gx, 2);
Serial.print(" gy = "); Serial.print( gy, 2);
Serial.print(" gz = "); Serial.print( gz, 2); Serial.println(" deg/s");
Serial.print("mx = "); Serial.print( (int)1000*mx );
Serial.print(" my = "); Serial.print( (int)1000*my );
Serial.print(" mz = "); Serial.print( (int)1000*mz ); Serial.println(" mG");
Serial.print("q0 = "); Serial.print(q[0]);
Serial.print(" qx = "); Serial.print(q[1]);
Serial.print(" qy = "); Serial.print(q[2]);
Serial.print(" qz = "); Serial.println(q[3]);
}
tempCount = readTempData(); // Read the gyro adc values
temperature = ((float) tempCount/256. + 25.0); // Gyro chip temperature in degrees Centigrade
// Print temperature in degrees Centigrade
Serial.print("Gyro temperature is "); Serial.print(temperature, 1); Serial.println(" degrees C"); // Print T values to tenths of s degree C
// Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
// In this coordinate system, the positive z-axis is down toward Earth.
// Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
// Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
// Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
// These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
// Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
// applied in the correct order which for this configuration is yaw, pitch, and then roll.
// For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
pitch *= 180.0f / PI;
yaw *= 180.0f / PI;
yaw -= 13.22f; // Declination at Los Altos, California is ~13 degrees 13 minutes on 2020-07-19
roll *= 180.0f / PI;
// Convert yaw to normal compass degrees
if (yaw < 0) yaw += 360.0;
if (yaw >= 360.0) yaw -= 360.0;
if(SerialDebug) {
Serial.print("Yaw, Pitch, Roll: ");
Serial.print(yaw, 2);
Serial.print(", ");
Serial.print(pitch, 2);
Serial.print(", ");
Serial.println(roll, 2);
Serial.print("rate = "); Serial.print((float)sumCount/sum, 2); Serial.println(" Hz\n");
Serial.print("P=");
Pressure = lps22hb.readPressure();
Serial.print(Pressure);
Serial.print(" mbar");
//Serial.print(lps22hb.readTemperature());
Serial.print("Alt=");
Serial.print((44330.0f * (1.0f -pow(Pressure/(double)seaLevelPressure, 0.1902949f))));
Serial.println("m");
byte message[] ={0xC8, 0x09, 0x80, 0xF0, 0x06, 0x50, 0x80, 0x0B, 0x0E, 0x00, 0x14};
//byte message[] = {0xC8, 0x11, 0x02, 0x16, 0xC3, 0x71, 0xE3, 0xB8, 0x79, 0x4D, 0x7B, 0x00, 0x12, 0x78, 0x4D, 0x0A, 0x85, 0x08, 0xA5};
Serial1.write(message, sizeof(message));
delay(40);
//byte message2[] = {0xC8, 0x08, 0x1E, 0xFF, 0x74, 0xFF, 0x17, 0xA6, 0xFD, 0xDA};
byte message2[] = {0xC8, 0x11, 0x02, 0x16, 0xC3, 0x71, 0xE3, 0xB8, 0x79, 0x4D, 0x7B, 0x00, 0x12, 0x78, 0x4D, 0x0A, 0x85, 0x08, 0xA5};
//byte message2[] = {0xC8, 0x36, 0x80, 0xF1, 0x02, 0x42, 0x61, 0x64, 0x20, 0x6F, 0x72, 0x72, 0x61, 0x69, 0x6E, 0x20, 0x44, 0x61, 0x74, 0x61, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x42};
Serial1.write(message2, sizeof(message2));
}
// With these settings the filter is updating at a ~145 Hz rate using the Madgwick scheme and
// >200 Hz using the Mahony scheme even though the display refreshes at only 2 Hz.
// The filter update rate is determined mostly by the mathematical steps in the respective algorithms,
// the processor speed (8 MHz for the 3.3V Pro Mini), and the magnetometer ODR:
// an ODR of 10 Hz for the magnetometer produce the above rates, maximum magnetometer ODR of 100 Hz produces
// filter update rates of 36 - 145 and ~38 Hz for the Madgwick and Mahony schemes, respectively.
// This is presumably because the magnetometer read takes longer than the gyro or accelerometer reads.
// This filter update rate should be fast enough to maintain accurate platform orientation for
// stabilization control of a fast-moving robot or quadcopter. Compare to the update rate of 200 Hz
// produced by the on-board Digital Motion Processor of Invensense's MPU6050 6 DoF and MPU9150 9DoF sensors.
// The 3.3 V 8 MHz Pro Mini is doing pretty well!
digitalWrite(myLed, !digitalRead(myLed));
count = millis();
sumCount = 0;
sum = 0;
}
}
//===================================================================================================================
//====== Set of useful function to access acceleration. gyroscope, magnetometer, and temperature data
//===================================================================================================================
void getMres() {
switch (Mscale)
{
// Possible magnetometer scales (and their register bit settings) are:
// 4 Gauss (00), 8 Gauss (01), 12 Gauss (10) and 16 Gauss (11)
case MFS_4G:
mRes = 4.0/32768.0;
break;
case MFS_8G:
mRes = 8.0/32768.0;
break;
case MFS_12G:
mRes = 12.0/32768.0;
break;
case MFS_16G:
mRes = 16.0/32768.0;
break;
}
}
void getGres() {
switch (Gscale)
{
// Possible gyro scales (and their register bit settings) are:
// 245 DPS (00), 500 DPS (01), and 2000 DPS (11).
case GFS_245DPS:
gRes = 245.0/32768.0;
break;
case GFS_500DPS:
gRes = 500.0/32768.0;
break;
case GFS_2000DPS:
gRes = 2000.0/32768.0;
break;
}
}
void getAres() {
switch (Ascale)
{
// Possible accelerometer scales (and their register bit settings) are:
// 2 Gs (00), 16 Gs (01), 4 Gs (10), and 8 Gs (11).
case AFS_2G:
aRes = 2.0/32768.0;
break;
case AFS_16G:
aRes = 16.0/32768.0;
break;
case AFS_4G:
aRes = 4.0/32768.0;
break;
case AFS_8G:
aRes = 8.0/32768.0;
break;
}
}
void readAccelData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z accel register data stored here
readBytes(LSM9DS1XG_ADDRESS, LSM9DS1XG_OUT_X_L_XL, 6, &rawData[0]); // Read the six raw data registers into data array
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ;
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
}
void readGyroData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z gyro register data stored here
readBytes(LSM9DS1XG_ADDRESS, LSM9DS1XG_OUT_X_L_G, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ;
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
}
void readMagData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z gyro register data stored here
readBytes(LSM9DS1M_ADDRESS, LSM9DS1M_OUT_X_L_M, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; // Data stored as little Endian
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
}
int16_t readTempData()
{
uint8_t rawData[2]; // x/y/z gyro register data stored here
readBytes(LSM9DS1XG_ADDRESS, LSM9DS1XG_OUT_TEMP_L, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
return (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a 16-bit signed value
}
void initLSM9DS1()
{
// enable the 3-axes of the gyroscope
writeByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_CTRL_REG4, 0x38);
// configure the gyroscope
writeByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_CTRL_REG1_G, Godr << 5 | Gscale << 3 | Gbw);
delay(200);
// enable the three axes of the accelerometer
writeByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_CTRL_REG5_XL, 0x38);
// configure the accelerometer-specify bandwidth selection with Abw
writeByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_CTRL_REG6_XL, Aodr << 5 | Ascale << 3 | 0x04 |Abw);
delay(200);
// enable block data update, allow auto-increment during multiple byte read
writeByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_CTRL_REG8, 0x44);
// configure the magnetometer-enable temperature compensation of mag data
writeByte(LSM9DS1M_ADDRESS, LSM9DS1M_CTRL_REG1_M, 0x80 | Mmode << 5 | Modr << 2); // select x,y-axis mode
writeByte(LSM9DS1M_ADDRESS, LSM9DS1M_CTRL_REG2_M, Mscale << 5 ); // select mag full scale
writeByte(LSM9DS1M_ADDRESS, LSM9DS1M_CTRL_REG3_M, 0x00 ); // continuous conversion mode
writeByte(LSM9DS1M_ADDRESS, LSM9DS1M_CTRL_REG4_M, Mmode << 2 ); // select z-axis mode
writeByte(LSM9DS1M_ADDRESS, LSM9DS1M_CTRL_REG5_M, 0x40 ); // select block update mode
}
void selftestLSM9DS1()
{
float accel_noST[3] = {0., 0., 0.}, accel_ST[3] = {0., 0., 0.};
float gyro_noST[3] = {0., 0., 0.}, gyro_ST[3] = {0., 0., 0.};
writeByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_CTRL_REG10, 0x00); // disable self test
accelgyrocalLSM9DS1(gyro_noST, accel_noST);
writeByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_CTRL_REG10, 0x05); // enable gyro/accel self test
accelgyrocalLSM9DS1(gyro_ST, accel_ST);
float gyrodx = (gyro_ST[0] - gyro_noST[0]);
float gyrody = (gyro_ST[1] - gyro_noST[1]);
float gyrodz = (gyro_ST[2] - gyro_noST[2]);
Serial.println("Gyro self-test results: ");
Serial.print("x-axis = "); Serial.print(gyrodx); Serial.print(" dps"); Serial.println(" should be between 20 and 250 dps");
Serial.print("y-axis = "); Serial.print(gyrody); Serial.print(" dps"); Serial.println(" should be between 20 and 250 dps");
Serial.print("z-axis = "); Serial.print(gyrodz); Serial.print(" dps"); Serial.println(" should be between 20 and 250 dps");
float accdx = 1000.*(accel_ST[0] - accel_noST[0]);
float accdy = 1000.*(accel_ST[1] - accel_noST[1]);
float accdz = 1000.*(accel_ST[2] - accel_noST[2]);
Serial.println("Accelerometer self-test results: ");
Serial.print("x-axis = "); Serial.print(accdx); Serial.print(" mg"); Serial.println(" should be between 60 and 1700 mg");
Serial.print("y-axis = "); Serial.print(accdy); Serial.print(" mg"); Serial.println(" should be between 60 and 1700 mg");
Serial.print("z-axis = "); Serial.print(accdz); Serial.print(" mg"); Serial.println(" should be between 60 and 1700 mg");
writeByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_CTRL_REG10, 0x00); // disable self test
delay(200);
}
// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
void accelgyrocalLSM9DS1(float * dest1, float * dest2)
{
uint8_t data[6] = {0, 0, 0, 0, 0, 0};
int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
uint16_t samples, ii;
// enable the 3-axes of the gyroscope
writeByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_CTRL_REG4, 0x38);
// configure the gyroscope
writeByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_CTRL_REG1_G, Godr << 5 | Gscale << 3 | Gbw);
delay(200);
// enable the three axes of the accelerometer
writeByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_CTRL_REG5_XL, 0x38);
// configure the accelerometer-specify bandwidth selection with Abw
writeByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_CTRL_REG6_XL, Aodr << 5 | Ascale << 3 | 0x04 |Abw);
delay(200);
// enable block data update, allow auto-increment during multiple byte read
writeByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_CTRL_REG8, 0x44);
// First get gyro bias
byte c = readByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_CTRL_REG9);
writeByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_CTRL_REG9, c | 0x02); // Enable gyro FIFO
delay(50); // Wait for change to take effect
writeByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_FIFO_CTRL, 0x20 | 0x1F); // Enable gyro FIFO stream mode and set watermark at 32 samples
delay(1000); // delay 1000 milliseconds to collect FIFO samples
samples = (readByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_FIFO_SRC) & 0x2F); // Read number of stored samples
for(ii = 0; ii < samples ; ii++) { // Read the gyro data stored in the FIFO
int16_t gyro_temp[3] = {0, 0, 0};
readBytes(LSM9DS1XG_ADDRESS, LSM9DS1XG_OUT_X_L_G, 6, &data[0]);
gyro_temp[0] = (int16_t) (((int16_t)data[1] << 8) | data[0]); // Form signed 16-bit integer for each sample in FIFO
gyro_temp[1] = (int16_t) (((int16_t)data[3] << 8) | data[2]);
gyro_temp[2] = (int16_t) (((int16_t)data[5] << 8) | data[4]);
gyro_bias[0] += (int32_t) gyro_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
gyro_bias[1] += (int32_t) gyro_temp[1];
gyro_bias[2] += (int32_t) gyro_temp[2];
}
gyro_bias[0] /= samples; // average the data
gyro_bias[1] /= samples;
gyro_bias[2] /= samples;
dest1[0] = (float)gyro_bias[0]*gRes; // Properly scale the data to get deg/s
dest1[1] = (float)gyro_bias[1]*gRes;
dest1[2] = (float)gyro_bias[2]*gRes;
c = readByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_CTRL_REG9);
writeByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_CTRL_REG9, c & ~0x02); //Disable gyro FIFO
delay(50);
writeByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_FIFO_CTRL, 0x00); // Enable gyro bypass mode
// now get the accelerometer bias
c = readByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_CTRL_REG9);
writeByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_CTRL_REG9, c | 0x02); // Enable accel FIFO
delay(50); // Wait for change to take effect
writeByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_FIFO_CTRL, 0x20 | 0x1F); // Enable accel FIFO stream mode and set watermark at 32 samples
delay(1000); // delay 1000 milliseconds to collect FIFO samples
samples = (readByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_FIFO_SRC) & 0x2F); // Read number of stored samples
for(ii = 0; ii < samples ; ii++) { // Read the accel data stored in the FIFO
int16_t accel_temp[3] = {0, 0, 0};
readBytes(LSM9DS1XG_ADDRESS, LSM9DS1XG_OUT_X_L_XL, 6, &data[0]);
accel_temp[0] = (int16_t) (((int16_t)data[1] << 8) | data[0]); // Form signed 16-bit integer for each sample in FIFO
accel_temp[1] = (int16_t) (((int16_t)data[3] << 8) | data[2]);
accel_temp[2] = (int16_t) (((int16_t)data[5] << 8) | data[4]);
accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
accel_bias[1] += (int32_t) accel_temp[1];
accel_bias[2] += (int32_t) accel_temp[2];
}
accel_bias[0] /= samples; // average the data
accel_bias[1] /= samples;
accel_bias[2] /= samples;
if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) (1.0/aRes);} // Remove gravity from the z-axis accelerometer bias calculation
else {accel_bias[2] += (int32_t) (1.0/aRes);}
dest2[0] = (float)accel_bias[0]*aRes; // Properly scale the data to get g
dest2[1] = (float)accel_bias[1]*aRes;
dest2[2] = (float)accel_bias[2]*aRes;
c = readByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_CTRL_REG9);
writeByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_CTRL_REG9, c & ~0x02); //Disable accel FIFO
delay(50);
writeByte(LSM9DS1XG_ADDRESS, LSM9DS1XG_FIFO_CTRL, 0x00); // Enable accel bypass mode
}
void magcalLSM9DS1(float * dest1)
{
uint8_t data[6]; // data array to hold mag x, y, z, data
uint16_t ii = 0, sample_count = 0;
int32_t mag_bias[3] = {0, 0, 0};
int16_t mag_max[3] = {0, 0, 0}, mag_min[3] = {0, 0, 0};
// configure the magnetometer-enable temperature compensation of mag data
writeByte(LSM9DS1M_ADDRESS, LSM9DS1M_CTRL_REG1_M, 0x80 | Mmode << 5 | Modr << 2); // select x,y-axis mode
writeByte(LSM9DS1M_ADDRESS, LSM9DS1M_CTRL_REG2_M, Mscale << 5 ); // select mag full scale
writeByte(LSM9DS1M_ADDRESS, LSM9DS1M_CTRL_REG3_M, 0x00 ); // continuous conversion mode
writeByte(LSM9DS1M_ADDRESS, LSM9DS1M_CTRL_REG4_M, Mmode << 2 ); // select z-axis mode
writeByte(LSM9DS1M_ADDRESS, LSM9DS1M_CTRL_REG5_M, 0x40 ); // select block update mode
Serial.println("Mag Calibration: Wave device in a figure eight until done!");
delay(4000);
sample_count = 128;
for(ii = 0; ii < sample_count; ii++) {
int16_t mag_temp[3] = {0, 0, 0};
readBytes(LSM9DS1M_ADDRESS, LSM9DS1M_OUT_X_L_M, 6, &data[0]); // Read the six raw data registers into data array
mag_temp[0] = (int16_t) (((int16_t)data[1] << 8) | data[0]) ; // Form signed 16-bit integer for each sample in FIFO
mag_temp[1] = (int16_t) (((int16_t)data[3] << 8) | data[2]) ;
mag_temp[2] = (int16_t) (((int16_t)data[5] << 8) | data[4]) ;
for (int jj = 0; jj < 3; jj++) {
if(mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj];
if(mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj];
}
delay(105); // at 10 Hz ODR, new mag data is available every 100 ms
}
// Serial.println("mag x min/max:"); Serial.println(mag_max[0]); Serial.println(mag_min[0]);
// Serial.println("mag y min/max:"); Serial.println(mag_max[1]); Serial.println(mag_min[1]);
// Serial.println("mag z min/max:"); Serial.println(mag_max[2]); Serial.println(mag_min[2]);
mag_bias[0] = (mag_max[0] + mag_min[0])/2; // get average x mag bias in counts
mag_bias[1] = (mag_max[1] + mag_min[1])/2; // get average y mag bias in counts
mag_bias[2] = (mag_max[2] + mag_min[2])/2; // get average z mag bias in counts
dest1[0] = (float) mag_bias[0]*mRes; // save mag biases in G for main program
dest1[1] = (float) mag_bias[1]*mRes;
dest1[2] = (float) mag_bias[2]*mRes;
//write biases to accelerometermagnetometer offset registers as counts);
writeByte(LSM9DS1M_ADDRESS, LSM9DS1M_OFFSET_X_REG_L_M, (int16_t) mag_bias[0] & 0xFF);
writeByte(LSM9DS1M_ADDRESS, LSM9DS1M_OFFSET_X_REG_H_M, ((int16_t)mag_bias[0] >> 8) & 0xFF);
writeByte(LSM9DS1M_ADDRESS, LSM9DS1M_OFFSET_Y_REG_L_M, (int16_t) mag_bias[1] & 0xFF);
writeByte(LSM9DS1M_ADDRESS, LSM9DS1M_OFFSET_Y_REG_H_M, ((int16_t)mag_bias[1] >> 8) & 0xFF);
writeByte(LSM9DS1M_ADDRESS, LSM9DS1M_OFFSET_Z_REG_L_M, (int16_t) mag_bias[2] & 0xFF);
writeByte(LSM9DS1M_ADDRESS, LSM9DS1M_OFFSET_Z_REG_H_M, ((int16_t)mag_bias[2] >> 8) & 0xFF);
Serial.println("Mag Calibration done!");
}
// I2C read/write functions for the LSM9DS1and AK8963 sensors
void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
{
Wire1.beginTransmission(address); // Initialize the Tx buffer
Wire1.write(subAddress); // Put slave register address in Tx buffer
Wire1.write(data); // Put data in Tx buffer
Wire1.endTransmission(); // Send the Tx buffer
}
uint8_t readByte(uint8_t address, uint8_t subAddress)
{
uint8_t data; // `data` will store the register data
Wire1.beginTransmission(address); // Initialize the Tx buffer
Wire1.write(subAddress); // Put slave register address in Tx buffer
// Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive
Wire1.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive
// Wire.requestFrom(address, 1); // Read one byte from slave register address
Wire1.requestFrom(address, (size_t) 1); // Read one byte from slave register address
data = Wire1.read(); // Fill Rx buffer with result
return data; // Return data read from slave register
}
void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
{
Wire1.beginTransmission(address); // Initialize the Tx buffer
Wire1.write(subAddress); // Put slave register address in Tx buffer
// Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive
Wire1.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive
uint8_t i = 0;
Wire1.requestFrom(address, count); // Read bytes from slave register address
// Wire.requestFrom(address, (size_t) count); // Read bytes from slave register address
while (Wire1.available()) {
dest[i++] = Wire1.read(); } // Put read results in the Rx buffer
}
void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
{
float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
float norm;
float hx, hy, _2bx, _2bz;
float s1, s2, s3, s4;
float qDot1, qDot2, qDot3, qDot4;
// Auxiliary variables to avoid repeated arithmetic
float _2q1mx;
float _2q1my;
float _2q1mz;
float _2q2mx;
float _4bx;
float _4bz;
float _2q1 = 2.0f * q1;
float _2q2 = 2.0f * q2;
float _2q3 = 2.0f * q3;
float _2q4 = 2.0f * q4;
float _2q1q3 = 2.0f * q1 * q3;
float _2q3q4 = 2.0f * q3 * q4;
float q1q1 = q1 * q1;
float q1q2 = q1 * q2;
float q1q3 = q1 * q3;
float q1q4 = q1 * q4;
float q2q2 = q2 * q2;
float q2q3 = q2 * q3;
float q2q4 = q2 * q4;
float q3q3 = q3 * q3;
float q3q4 = q3 * q4;
float q4q4 = q4 * q4;
// Normalise accelerometer measurement
norm = sqrt(ax * ax + ay * ay + az * az);
if (norm == 0.0f) return; // handle NaN
norm = 1.0f/norm;
ax *= norm;
ay *= norm;
az *= norm;
// Normalise magnetometer measurement
norm = sqrt(mx * mx + my * my + mz * mz);
if (norm == 0.0f) return; // handle NaN
norm = 1.0f/norm;
mx *= norm;
my *= norm;
mz *= norm;
// Reference direction of Earth's magnetic field
_2q1mx = 2.0f * q1 * mx;
_2q1my = 2.0f * q1 * my;
_2q1mz = 2.0f * q1 * mz;
_2q2mx = 2.0f * q2 * mx;
hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
_2bx = sqrt(hx * hx + hy * hy);
_2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
_4bx = 2.0f * _2bx;
_4bz = 2.0f * _2bz;
// Gradient decent algorithm corrective step
s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude
norm = 1.0f/norm;
s1 *= norm;
s2 *= norm;
s3 *= norm;
s4 *= norm;
// Compute rate of change of quaternion
qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
// Integrate to yield quaternion
q1 += qDot1 * deltat;
q2 += qDot2 * deltat;
q3 += qDot3 * deltat;
q4 += qDot4 * deltat;
norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
norm = 1.0f/norm;
q[0] = q1 * norm;
q[1] = q2 * norm;
q[2] = q3 * norm;
q[3] = q4 * norm;
}