-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
executable file
·269 lines (244 loc) · 12.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# MIT License
#
# Copyright (c) 2024 Mohammad Zunaed, mHealth Lab, BUET
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from argparse import ArgumentParser
import torch
from torch.utils.data import DataLoader
import numpy as np
from src.trainers.trainer_srm_il import ModelTrainer_IL
from src.trainers.trainer_srm_il_fl import ModelTrainer_SRM_IL_FL
from src.trainers.trainer_srm_il_fl_cons import ModelTrainer_SRM_IL_FL_CONS
from src.trainers.trainer_srm_il_cons import ModelTrainer_SRM_IL_CONS
from src.trainers.trainer_callbacks import set_random_state, AverageMeter, PrintMeter
from src.datasets.data import ThoracicDataset, get_train_transforms, get_valid_transforms, ThoracicDatasetDual,\
ThoracicDatasetTest, collate_fn_img_level_ds
from src.models.build_model import create_model
from src.configs.training_configs import all_configs, configs_to_train
from src.utils.misc import remove_key_by_keyword_from_state_dict
def get_args():
"""
get command line args
"""
parser = ArgumentParser(description='train')
parser.add_argument('--run_configs_list', type=str, nargs="*", default='prop_configs_list')
parser.add_argument('--gpu_ids', type=str, default='0')
parser.add_argument('--n_workers', type=int, default=24)
parser.add_argument('--batch_size', type=int, default=50)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--lr', type=float, default=0.0001)
parser.add_argument('--image_resize_dim', type=int, default=256)
parser.add_argument('--image_crop_dim', type=int, default=224)
parser.add_argument('--do_grad_accum', type=bool, default=True)
parser.add_argument('--grad_accum_step', type=int, default=4)
parser.add_argument('--use_ema', type=bool, default=True)
parser.add_argument('--use_focal_loss', type=bool, default=True)
parser.add_argument('--focal_loss_alpha', type=float, default=0.25)
parser.add_argument('--focal_loss_gamma', type=float, default=2)
parser.add_argument('--num_classes', type=int, default=14)
parser.add_argument('--n_folds', type=int, default=5)
args = parser.parse_args()
return args
def main():
"""
main function
"""
args = get_args()
# print(1)
# set gpu ids
str_ids = args.gpu_ids.split(',')
args.gpu_ids = []
for str_id in str_ids:
gpu_id = int(str_id)
if gpu_id >= 0:
args.gpu_ids.append(gpu_id)
# check if there are duplicate weight saving paths
unique_paths = np.unique([ x[1]['weight_saving_path'] for x in all_configs.items() ])
assert len(all_configs.keys()) == len(unique_paths)
run_configs_list = configs_to_train['prop_configs_list']
for config_name in run_configs_list:
configs = all_configs[config_name]
dataset_root_dir = configs['dataset_root_dir']
split_info_dict_dir = configs['split_info_dict_dir']
split_dict = np.load(split_info_dict_dir, allow_pickle=True).item()
for fold_number in range(args.n_folds):
set_random_state(args.seed)
# if fold_number <= 0:
# continue
print(f'Running fold-{fold_number} ....')
train_fpaths = split_dict[f'fold_{fold_number}_train_fpaths']
train_labels = split_dict[f'fold_{fold_number}_train_labels']
val_fpaths = split_dict[f'fold_{fold_number}_val_fpaths']
val_labels = split_dict[f'fold_{fold_number}_val_labels']
if configs['method'] in ['srm_il', 'srm_fl', 'srm_il_fl']:
train_dataset = ThoracicDataset(
datasets_root_dir=dataset_root_dir,
fpaths=train_fpaths,
labels=train_labels,
transform=get_train_transforms(args.image_resize_dim, args.image_crop_dim),
use_SRM_IL=configs['use_srm_il'],
srm_il_min_value=configs['srm_il_min_value'],
srm_il_max_value=configs['srm_il_max_value'],
)
elif configs['method'] in ['srm_il_cons', 'srm_il_fl_cons', 'srm_il_cons']:
train_dataset = ThoracicDatasetDual(
datasets_root_dir=dataset_root_dir,
fpaths=train_fpaths,
labels=train_labels,
transform=get_train_transforms(args.image_resize_dim, args.image_crop_dim),
srm_il_min_value=configs['srm_il_min_value'],
srm_il_max_value=configs['srm_il_max_value'],
)
val_dataset = ThoracicDatasetTest(
datasets_root_dir=dataset_root_dir,
fpaths=val_fpaths,
labels=val_labels,
transform=get_valid_transforms(args.image_resize_dim, args.image_crop_dim),
)
train_loader = DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.n_workers,
drop_last=True,
collate_fn=collate_fn_img_level_ds,
)
val_loader = DataLoader(
val_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.n_workers,
drop_last=False,
collate_fn=collate_fn_img_level_ds,
)
model = create_model(configs['backbone_architecture'], args.num_classes, init_srm_fl=configs['init_srm_fl'], randomization_stage=configs['randomization_stage'])
if configs['checkpoint_root_path'] is not None:
print('loading checkpoint!')
wpath = configs['checkpoint_root_path']
checkpoint = torch.load(f'{wpath}/fold{fold_number}/checkpoint_best_auc_fold{fold_number}.pth')
print('fold {} loss score: {:.4f}'.format(fold_number, checkpoint['val_loss']))
print('fold {} auc score: {:.4f}'.format(fold_number, checkpoint['val_auc']))
model.load_state_dict(remove_key_by_keyword_from_state_dict(checkpoint['Model_state_dict']), strict=False)
del checkpoint
else:
print('no checkpoint path is given!')
if configs['method'] in ['srm_il']:
trainer_args = {
'model': model,
'Loaders': [train_loader, val_loader],
'metrics': {
'loss': AverageMeter,
'auc': PrintMeter,
},
'checkpoint_saving_path': configs['weight_saving_path'],
'lr': args.lr,
'epochsTorun': configs['epochs'],
'gpu_ids': args.gpu_ids,
'do_grad_accum': args.do_grad_accum,
'grad_accum_step': args.grad_accum_step,
'use_ema': args.use_ema,
'use_focal_loss': args.use_focal_loss,
'focal_loss_alpha': args.focal_loss_alpha,
'focal_loss_gamma': args.focal_loss_gamma,
'fold': fold_number,
}
trainer = ModelTrainer_IL(**trainer_args)
trainer.fit()
elif configs['method'] in ['srm_fl', 'srm_il_fl']:
trainer_args = {
'model': model,
'Loaders': [train_loader, val_loader],
'metrics': {
'loss': AverageMeter,
'cls_loss': AverageMeter,
'content_loss': AverageMeter,
'style_loss': AverageMeter,
'auc': PrintMeter,
},
'checkpoint_saving_path': configs['weight_saving_path'],
'lr': args.lr,
'epochsTorun': configs['epochs'],
'gpu_ids': args.gpu_ids,
'do_grad_accum': args.do_grad_accum,
'grad_accum_step': args.grad_accum_step,
'use_ema': args.use_ema,
'use_focal_loss': args.use_focal_loss,
'focal_loss_alpha': args.focal_loss_alpha,
'focal_loss_gamma': args.focal_loss_gamma,
'fold': fold_number,
'eta': configs['eta'],
}
trainer = ModelTrainer_SRM_IL_FL(**trainer_args)
trainer.fit()
elif configs['method'] in ['srm_il_fl_cons']:
trainer_args = {
'model': model,
'Loaders': [train_loader, val_loader],
'metrics': {
'loss': AverageMeter,
'cls_loss': AverageMeter,
'content_loss': AverageMeter,
'style_loss': AverageMeter,
'auc': PrintMeter,
'ccr_loss': AverageMeter,
'pdr_loss': AverageMeter,
},
'checkpoint_saving_path': configs['weight_saving_path'],
'lr': args.lr,
'epochsTorun': configs['epochs'],
'gpu_ids': args.gpu_ids,
'do_grad_accum': args.do_grad_accum,
'grad_accum_step': args.grad_accum_step,
'use_ema': args.use_ema,
'use_focal_loss': args.use_focal_loss,
'focal_loss_alpha': args.focal_loss_alpha,
'focal_loss_gamma': args.focal_loss_gamma,
'fold': fold_number,
'eta': configs['eta'],
}
trainer = ModelTrainer_SRM_IL_FL_CONS(**trainer_args)
trainer.fit()
elif configs['method'] in ['srm_il_cons']:
trainer_args = {
'model': model,
'Loaders': [train_loader, val_loader],
'metrics': {
'loss': AverageMeter,
'cls_loss': AverageMeter,
'ccr_loss': AverageMeter,
'pdr_loss': AverageMeter,
'auc': PrintMeter,
},
'checkpoint_saving_path': configs['weight_saving_path'],
'lr': args.lr,
'epochsTorun': configs['epochs'],
'gpu_ids': args.gpu_ids,
'do_grad_accum': args.do_grad_accum,
'grad_accum_step': args.grad_accum_step,
'use_ema': args.use_ema,
'use_focal_loss': args.use_focal_loss,
'focal_loss_alpha': args.focal_loss_alpha,
'focal_loss_gamma': args.focal_loss_gamma,
'fold': fold_number,
}
trainer = ModelTrainer_SRM_IL_CONS(**trainer_args)
trainer.fit()
if __name__ == '__main__':
main()