-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
232 lines (202 loc) · 13.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import argparse
import os
from PIL import Image
import torch
from datetime import datetime
from utils import get_mask_and_background, paste_pipeline, get_mask_from_image, sd_inpainting, sd_img2img, sd_colorization, get_dataframe_row, paste_image, extract_object
from utils import get_bike_colorization_prompt, get_bike_inpainting_prompt, get_car_colorization_prompt, get_car_inpainting_prompt, get_product_colorization_prompt, get_product_inpainting_prompt
from utils import inpaint as bike_inpainting
# this function can be used to generate a bike based on reference points and wheels using a pretrained ddpm
# implementation follows the algorithm by Ioan-Daniel Cracium, DDPM trained by Jiajae Fan
def bike_diffusion(parameter_csv_path: str, device: torch.device, ckpt_id: str='29000', mask_dilation: int=5, mask_fill_holes: bool=True, bike_idx: int=0, wheel_design_type: int=0, width: int=256, height: int=256):
assert wheel_design_type == 0 or wheel_design_type == 1
mask, background = get_mask_and_background(parameter_csv_path, bike_idx, wheel_design_type, width, height)
bike_img = bike_inpainting(background, mask, device, 50, ckpt_id, mask_dilation, mask_fill_holes)
return bike_img.convert('RGB')
# wrapper function for colorization using Stable Diffusion
# colorization is performed by first upscaling using Stable Diffusion and then performing masked img2img diffusion
def colorization(image: Image, colorization_model: str, upscaling_model: str, colorization_prompt: str, colorization_negative_prompt: str, fill_holes: bool, dilation: int, strength: float, prompt_guidance: float):
colorized = sd_colorization(colorization_model, upscaling_model, image, colorization_prompt, negative_prompt=colorization_negative_prompt, fill_holes=fill_holes, dilation_iterations=dilation, colorization_strength=strength, prompt_guidance=prompt_guidance)
return colorized
# wrapper function for the main part of our algorithm
def insert_diffusion(image: Image, mask_threshold: int, prompt: str, negative_prompt: str, img2img_model: str, inpainting_model: str, img2img_strength: float, inpainting_steps: int, inpainting_guidance: float, img2img_guidance: float, background_image: Image=None, composition_strength: float=1) -> Image:
mask = get_mask_from_image(image, mask_threshold)
# if we have a background image we paste the foreground onto the background by turning white pixels transparent
if background_image is not None:
image = paste_image(image, background_image)
# perform masked inpainting
inpainted = sd_inpainting(inpainting_model, image, mask, prompt, negative_prompt, inpainting_guidance, inpainting_steps, inpainting_strength=composition_strength)
# perform rediffusion step
result = sd_img2img(img2img_model, inpainted, prompt, negative_prompt, img2img_strength, img2img_guidance)
return result
# wrapper function to extract an object with langSAM and paste it onto a white background of the same size as the original image
def extract_wrapper(image: Image, object_desc: str, background: Image=None) -> Image:
if background is None:
background = image
# extract the object using langSAM and insert it onto a white background of the same size as the background image
image = extract_object(image, background, object_desc)
return image
if __name__ == '__main__':
# -- CLI parameters --
# detailed description of CLI parameters can be found in the readme
parser = argparse.ArgumentParser()
parser.add_argument('--image', type=str, default=None)
parser.add_argument('--point_mode', action='store_true')
parser.add_argument('--extract_object', type=str, default=None)
parser.add_argument('--mask_threshold', type=int, default=175)
parser.add_argument('--background_prompt', type=str, default=None)
parser.add_argument('--negative_prompt', type=str, default="wrong proportions, toy, black frame, motorbike, silhouette, model, clay, high saddle, large wheels, text, above floor, flying, changed bike color, white background, duplicate, multiple, people, basket, distortion, low quality, worst, ugly, fuzzy, blurry, cartoon, simple, art")
parser.add_argument('--auto_bike_prompt', action='store_true')
parser.add_argument('--auto_car_prompt', action='store_true')
parser.add_argument('--auto_product_prompt', action='store_true')
parser.add_argument('--background_image', type=str, default=None)
parser.add_argument('--composition_strength', type=float, default=1.)
parser.add_argument('--img2img_model', type=str, default="stabilityai/stable-diffusion-xl-refiner-1.0")
parser.add_argument('--inpainting_model', type=str, default="stabilityai/stable-diffusion-2-inpainting")
parser.add_argument('--img2img_strength', type=float, default=0.2)
parser.add_argument('--inpainting_steps', type=int, default=75)
parser.add_argument('--inpainting_guidance', type=float, default=15)
parser.add_argument('--img2img_guidance', type=float, default=7.5)
parser.add_argument('--output_folder', type=str, default='./images')
parser.add_argument('--colorize', action='store_true')
parser.add_argument('--colorization_model', type=str, default='diffusers/stable-diffusion-xl-1.0-inpainting-0.1')
parser.add_argument('--upscaling_model', type=str, default='stabilityai/stable-diffusion-x4-upscaler')
parser.add_argument('--colorization_prompt', type=str, default='A street bike with an orange frame a black seat, black tires, and black handles on a clean white background, 2D, colorful, side view')
parser.add_argument('--colorization_negative_prompt', type=str, default='black and white, black frame, silhouette, motorbike, toy, clay, model, missing saddle, high saddle, details, detailed, greyscale, duplicate, multiple, detached, shadow, contact shadow, drop shadow, reflection, ground, unrealistic, bad, distorted, ugly, weird')
parser.add_argument('--do_not_fill_holes', action='store_true')
parser.add_argument('--dilation', type=int, default=8)
parser.add_argument('--colorization_strength', type=float, default=0.91)
parser.add_argument('--colorization_prompt_guidance', type=float, default=17)
parser.add_argument('--datasheet_path', type=str, default=None)
parser.add_argument('--bike_idx', type=int, default=0)
parser.add_argument('--place', type=str, default=None)
parser.add_argument('--color', type=str, default=None)
parser.add_argument('--ckpt_id', type=str, default='290000')
parser.add_argument('--bike_mask_dilation', type=int, default=5)
parser.add_argument('--do_not_fill_bike_holes', action='store_true')
parser.add_argument('--wheel_design', type=int, default=0)
parser.add_argument('--scale', type=float, default=1)
parser.add_argument('--fraction_down', type=float, default=0.5)
parser.add_argument('--fraction_right', type=float, default=0.5)
parser.add_argument('--rotation', type=float, default=0)
parser.add_argument('--car_manufacturer', type=str, default=None)
parser.add_argument('--car_type', type=str, default=FileNotFoundError)
parser.add_argument('--product_type', type=str, default=None)
args = parser.parse_args()
arg_image = args.image # the image path if provided
points = args.point_mode # True if a bike image is to be generated from reference points before doing InsertDiffusion
object_desc = args.extract_object # None if object is already on white background
# parameters relevant to generating a bike from reference points
datasheet_path = args.datasheet_path
ckpt_id = args.ckpt_id
bike_mask_dilation = args.bike_mask_dilation
bike_mask_fill_holes = not args.do_not_fill_bike_holes
bike_idx = args.bike_idx
wheel_design = args.wheel_design
if arg_image is None and not points:
raise ValueError('Algorithm needs either start image or reference points')
if arg_image is not None and points:
raise ValueError('Please provide either a start image or reference points, using both is not supported')
# if point mode is used we employ the bike diffusion method to generate the starting image
if points:
if datasheet_path is None:
raise ValueError('Please provide a datasheet path to run in point mode')
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
image = bike_diffusion(datasheet_path, device, ckpt_id, bike_mask_dilation, bike_mask_fill_holes, bike_idx, wheel_design)
# if an image path is provided the start image is simply loaded from disk
elif arg_image is not None:
image = Image.open(arg_image)
background_image = args.background_image
composition_strength = min(1, max(0, args.composition_strength)) # ensure 0-1 range
# if a background image is provided and we are not using full composition strength we load the background image
if background_image is not None and composition_strength < 1:
background_image = Image.open(background_image)
else:
background_image is None
# if no background image is provided we need to use full strength in inpainting
if background_image is None:
composition_strength = 1.
# extract object from background using langSAM
if object_desc is not None:
image = extract_wrapper(image, object_desc, background_image)
# requirements for using/generating prompt
prompt = args.background_prompt
auto_prompt_bike = args.auto_bike_prompt
auto_prompt_car = args.auto_car_prompt
auto_prompt_product = args.auto_product_prompt
place = args.place
if auto_prompt_bike or auto_prompt_car or auto_prompt_product:
prompt = None
if place is None:
raise ValueError('You have to provide a place to use autoprompting')
if int(auto_prompt_bike) + int(auto_prompt_car) + int(auto_prompt_product) > 1:
raise ValueError('Can only generate one auto prompt')
mask_threshold = args.mask_threshold
negative_prompt = args.negative_prompt
img2img_model = args.img2img_model
inpainting_model = args.inpainting_model
img2img_strength = args.img2img_strength
inpainting_steps = args.inpainting_steps
inpainting_guidance = args.inpainting_guidance
img2img_guidance = args.img2img_guidance
output_folder = args.output_folder
colorize = args.colorize
colorization_model = args.colorization_model
upscaling_model = args.upscaling_model
colorization_prompt = args.colorization_prompt
colorization_negative_prompt = args.colorization_negative_prompt
fill_holes = not args.do_not_fill_holes
dilation = args.dilation
colorization_strength = args.colorization_strength
colorization_prompt_guidance = args.colorization_prompt_guidance
color = args.color
scale = args.scale
fraction_down = args.fraction_down
fraction_right = args.fraction_right
rotation = args.rotation
car_manufacturer = args.car_manufacturer
car_type = args.car_type
product_type = args.product_type
if colorize and colorization_prompt is None and color is None:
raise ValueError('You have specified to use colorization but have neither provided a colorization prompt nor a color')
# generate prompts using predefined masks if no full prompt is provided
if auto_prompt_bike:
# bike prompts are generated using information from the dataset csv file
bike_row = get_dataframe_row(datasheet_path, bike_idx)
prompt = get_bike_inpainting_prompt(color, place, bike_row)
if colorize and colorization_prompt is None:
if not datasheet_path:
raise ValueError('if you want to use auto-prompt generation for bikes please provide a datasheet path')
bike_row = get_dataframe_row(datasheet_path, bike_idx)
colorization_prompt = get_bike_colorization_prompt(color, bike_row)
if auto_prompt_car:
if car_manufacturer is None or car_type is None:
raise ValueError('Please provide a color, car_manufacturer and car_type to use auto prompt generation for cars')
prompt = get_car_inpainting_prompt(car_manufacturer, car_type, place, color if color is not None else '')
if colorize and colorization_prompt is None:
colorization_prompt = get_car_colorization_prompt(color, car_manufacturer, car_type)
if auto_prompt_product:
if product_type is None:
raise ValueError('Please provide a product_type to use auto prompt generation for products')
prompt = get_product_inpainting_prompt(product_type, place)
if colorize and colorization_prompt is None:
colorization_prompt = get_product_colorization_prompt(color, product_type)
if colorize and colorization_prompt is None:
raise ValueError('You specified to use colorization but have neither provided a colorization prompt nor are using auto prompting')
print('\nRunning with prompts:')
if colorize:
print('Colorization:')
print('\t'+colorization_prompt)
print('Background: ')
print('\t'+prompt)
print()
# scale and move object according to specification
image = paste_pipeline(image, scale, fraction_down, fraction_right, rotation=rotation)
# do image colorization if necessary
if colorize:
image = colorization(image, colorization_model, upscaling_model, colorization_prompt, colorization_negative_prompt, fill_holes, dilation, colorization_strength, colorization_prompt_guidance)
# do InsertDiffusion
result = insert_diffusion(image, mask_threshold, prompt, negative_prompt, img2img_model, inpainting_model, img2img_strength, inpainting_steps, inpainting_guidance, img2img_guidance, background_image, composition_strength)
# save result to specified (or default) output folder while ensuring that the folder exists
os.makedirs(output_folder, exist_ok=True)
result.save(f'{output_folder}/{datetime.now().strftime("%d-%m-%Y--%H-%M-%S")}.png')