|
| 1 | +import os |
| 2 | + |
| 3 | +import gradio as gr |
| 4 | + |
| 5 | +from .convert import nifti_to_obj |
| 6 | +from .css_style import css |
| 7 | +from .inference import run_model |
| 8 | +from .logger import flush_logs |
| 9 | +from .logger import read_logs |
| 10 | +from .logger import setup_logger |
| 11 | +from .utils import load_ct_to_numpy |
| 12 | +from .utils import load_pred_volume_to_numpy |
| 13 | + |
| 14 | +# setup logging |
| 15 | +LOGGER = setup_logger() |
| 16 | + |
| 17 | + |
| 18 | +class WebUI: |
| 19 | + def __init__( |
| 20 | + self, |
| 21 | + model_name: str = None, |
| 22 | + cwd: str = "/home/user/app/", |
| 23 | + share: int = 1, |
| 24 | + ): |
| 25 | + # global states |
| 26 | + self.images = [] |
| 27 | + self.pred_images = [] |
| 28 | + |
| 29 | + # @TODO: This should be dynamically set based on chosen volume size |
| 30 | + self.nb_slider_items = 820 |
| 31 | + |
| 32 | + self.model_name = model_name |
| 33 | + self.cwd = cwd |
| 34 | + self.share = share |
| 35 | + |
| 36 | + self.class_name = "Lymph Nodes" # default |
| 37 | + self.class_names = { |
| 38 | + "Lymph Nodes": "CT_LymphNodes", |
| 39 | + } |
| 40 | + |
| 41 | + self.result_names = { |
| 42 | + "Lymph Nodes": "LymphNodes", |
| 43 | + } |
| 44 | + |
| 45 | + # define widgets not to be rendered immediantly, but later on |
| 46 | + self.slider = gr.Slider( |
| 47 | + minimum=1, |
| 48 | + maximum=self.nb_slider_items, |
| 49 | + value=1, |
| 50 | + step=1, |
| 51 | + label="Which 2D slice to show", |
| 52 | + ) |
| 53 | + self.volume_renderer = gr.Model3D( |
| 54 | + clear_color=[0.0, 0.0, 0.0, 0.0], |
| 55 | + label="3D Model", |
| 56 | + show_label=True, |
| 57 | + visible=True, |
| 58 | + elem_id="model-3d", |
| 59 | + camera_position=[90, 180, 768], |
| 60 | + ).style(height=512) |
| 61 | + |
| 62 | + def set_class_name(self, value): |
| 63 | + LOGGER.info(f"Changed task to: {value}") |
| 64 | + self.class_name = value |
| 65 | + |
| 66 | + def combine_ct_and_seg(self, img, pred): |
| 67 | + return (img, [(pred, self.class_name)]) |
| 68 | + |
| 69 | + def upload_file(self, file): |
| 70 | + out = file.name |
| 71 | + LOGGER.info(f"File uploaded: {out}") |
| 72 | + return out |
| 73 | + |
| 74 | + def process(self, mesh_file_name): |
| 75 | + path = mesh_file_name.name |
| 76 | + run_model( |
| 77 | + path, |
| 78 | + model_path=os.path.join(self.cwd, "resources/models/"), |
| 79 | + task=self.class_names[self.class_name], |
| 80 | + name=self.result_names[self.class_name], |
| 81 | + ) |
| 82 | + LOGGER.info("Converting prediction NIfTI to OBJ...") |
| 83 | + nifti_to_obj("prediction.nii.gz") |
| 84 | + |
| 85 | + LOGGER.info("Loading CT to numpy...") |
| 86 | + self.images = load_ct_to_numpy(path) |
| 87 | + |
| 88 | + LOGGER.info("Loading prediction volume to numpy..") |
| 89 | + self.pred_images = load_pred_volume_to_numpy("./prediction.nii.gz") |
| 90 | + |
| 91 | + return "./prediction.obj" |
| 92 | + |
| 93 | + def get_img_pred_pair(self, k): |
| 94 | + k = int(k) |
| 95 | + out = gr.AnnotatedImage( |
| 96 | + self.combine_ct_and_seg(self.images[k], self.pred_images[k]), |
| 97 | + visible=True, |
| 98 | + elem_id="model-2d", |
| 99 | + ).style( |
| 100 | + color_map={self.class_name: "#ffae00"}, |
| 101 | + height=512, |
| 102 | + width=512, |
| 103 | + ) |
| 104 | + return out |
| 105 | + |
| 106 | + def toggle_sidebar(self, state): |
| 107 | + state = not state |
| 108 | + return gr.update(visible=state), state |
| 109 | + |
| 110 | + def run(self): |
| 111 | + with gr.Blocks(css=css) as demo: |
| 112 | + with gr.Row(): |
| 113 | + with gr.Column(visible=True, scale=0.2) as sidebar_left: |
| 114 | + logs = gr.Textbox( |
| 115 | + placeholder="\n" * 16, |
| 116 | + label="Logs", |
| 117 | + info="Verbose from inference will be displayed below.", |
| 118 | + lines=38, |
| 119 | + max_lines=38, |
| 120 | + autoscroll=True, |
| 121 | + elem_id="logs", |
| 122 | + show_copy_button=True, |
| 123 | + scroll_to_output=False, |
| 124 | + container=True, |
| 125 | + line_breaks=True, |
| 126 | + ) |
| 127 | + demo.load(read_logs, None, logs, every=1) |
| 128 | + |
| 129 | + with gr.Column(): |
| 130 | + with gr.Row(): |
| 131 | + with gr.Column(scale=0.2, min_width=150): |
| 132 | + sidebar_state = gr.State(True) |
| 133 | + |
| 134 | + btn_toggle_sidebar = gr.Button( |
| 135 | + "Toggle Sidebar", |
| 136 | + elem_id="toggle-button", |
| 137 | + ) |
| 138 | + btn_toggle_sidebar.click( |
| 139 | + self.toggle_sidebar, |
| 140 | + [sidebar_state], |
| 141 | + [sidebar_left, sidebar_state], |
| 142 | + ) |
| 143 | + |
| 144 | + btn_clear_logs = gr.Button( |
| 145 | + "Clear logs", elem_id="logs-button" |
| 146 | + ) |
| 147 | + btn_clear_logs.click(flush_logs, [], []) |
| 148 | + |
| 149 | + file_output = gr.File( |
| 150 | + file_count="single", elem_id="upload" |
| 151 | + ) |
| 152 | + file_output.upload( |
| 153 | + self.upload_file, file_output, file_output |
| 154 | + ) |
| 155 | + |
| 156 | + model_selector = gr.Dropdown( |
| 157 | + list(self.class_names.keys()), |
| 158 | + label="Task", |
| 159 | + info="Which structure to segment.", |
| 160 | + multiselect=False, |
| 161 | + size="sm", |
| 162 | + ) |
| 163 | + model_selector.input( |
| 164 | + fn=lambda x: self.set_class_name(x), |
| 165 | + inputs=model_selector, |
| 166 | + outputs=None, |
| 167 | + ) |
| 168 | + |
| 169 | + with gr.Column(scale=0.2, min_width=150): |
| 170 | + run_btn = gr.Button( |
| 171 | + "Run analysis", |
| 172 | + variant="primary", |
| 173 | + elem_id="run-button", |
| 174 | + ).style( |
| 175 | + full_width=False, |
| 176 | + size="lg", |
| 177 | + ) |
| 178 | + run_btn.click( |
| 179 | + fn=lambda x: self.process(x), |
| 180 | + inputs=file_output, |
| 181 | + outputs=self.volume_renderer, |
| 182 | + ) |
| 183 | + |
| 184 | + with gr.Row(): |
| 185 | + gr.Examples( |
| 186 | + examples=[ |
| 187 | + os.path.join(self.cwd, "test_thorax_CT.nii.gz"), |
| 188 | + ], |
| 189 | + inputs=file_output, |
| 190 | + outputs=file_output, |
| 191 | + fn=self.upload_file, |
| 192 | + cache_examples=True, |
| 193 | + ) |
| 194 | + |
| 195 | + gr.Markdown( |
| 196 | + """ |
| 197 | + **NOTE:** Inference might take several minutes (Lymph nodes: ~8 minutes), see logs to the left. \\ |
| 198 | + The segmentation will be available in the 2D and 3D viewers below when finished. |
| 199 | + """ |
| 200 | + ) |
| 201 | + |
| 202 | + with gr.Row(): |
| 203 | + with gr.Box(): |
| 204 | + with gr.Column(): |
| 205 | + # create dummy image to be replaced by loaded images |
| 206 | + t = gr.AnnotatedImage( |
| 207 | + visible=True, elem_id="model-2d" |
| 208 | + ).style( |
| 209 | + color_map={self.class_name: "#ffae00"}, |
| 210 | + height=512, |
| 211 | + width=512, |
| 212 | + ) |
| 213 | + |
| 214 | + self.slider.input( |
| 215 | + self.get_img_pred_pair, |
| 216 | + self.slider, |
| 217 | + t, |
| 218 | + ) |
| 219 | + |
| 220 | + self.slider.render() |
| 221 | + |
| 222 | + with gr.Box(): |
| 223 | + self.volume_renderer.render() |
| 224 | + |
| 225 | + # sharing app publicly -> share=True: |
| 226 | + # https://gradio.app/sharing-your-app/ |
| 227 | + # inference times > 60 seconds -> need queue(): |
| 228 | + # https://github.com/tloen/alpaca-lora/issues/60#issuecomment-1510006062 |
| 229 | + demo.queue().launch( |
| 230 | + server_name="0.0.0.0", server_port=7860, share=self.share |
| 231 | + ) |
0 commit comments