-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathget_hilp_agent.py
254 lines (224 loc) · 8.09 KB
/
get_hilp_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import glob
import os
import platform
import time
from datetime import datetime
from email.mime import base, image
if "mac" in platform.platform():
pass
else:
os.environ["MUJOCO_GL"] = "egl"
if "SLURM_STEP_GPUS" in os.environ:
os.environ["EGL_DEVICE_ID"] = os.environ["SLURM_STEP_GPUS"]
import sys
from functools import partial
import flax
import jax
import jax.numpy as jnp
import numpy as np
import tqdm
from absl import app, flags
sys.path.insert(0, os.path.abspath("hilp/hilp_gcrl"))
import pickle
from ml_collections import ConfigDict
from hilp import ant_diagnostics, d4rl_ant, d4rl_utils
from hilp.agents import hilp as learner
from jaxrl_m.evaluation import EpisodeMonitor
def get_default_config(updates=None):
config = ConfigDict()
config.agent_name = "hilp"
config.env_name = "antmaze-large-diverse-v2"
config.save_dir = "exp/"
config.run_group = "Debug"
config.seed = 0
config.eval_episodes = 50
config.num_video_episodes = 2
config.log_interval = 1000
config.eval_interval = 100000
config.save_interval = 100000
config.batch_size = 1024
config.train_steps = 1000000
config.lr = 3e-4
config.value_hidden_dim = 512
config.value_num_layers = 3
config.actor_hidden_dim = 512
config.actor_num_layers = 3
config.discount = 0.99
config.tau = 0.005
config.expectile = 0.95
config.use_layer_norm = 1
config.skill_dim = 32
config.skill_expectile = 0.9
config.skill_temperature = 10
config.skill_discount = 0.99
config.p_currgoal = 0.0
config.p_trajgoal = 0.625
config.p_randomgoal = 0.375
config.planning_num_recursions = 0
config.planning_num_states = 50000
config.planning_num_knns = 50
config.encoder = None
config.p_aug = None
config.algo_name = None
if updates is not None:
config.update(ConfigDict(updates).copy_and_resolve_references())
return config
def get_env_and_dataset(env_name, visual):
aux_env = {}
goal_info = {}
if "antmaze" in env_name:
import gym
env = gym.make(env_name)
env = EpisodeMonitor(env)
dataset = d4rl_utils.get_dataset(env, env_name, goal_conditioned=True)
dataset = dataset.copy({"rewards": dataset["rewards"] - 1.0})
if visual:
env.render(mode="rgb_array", width=200, height=200)
if "large" in env_name:
env.viewer.cam.lookat[0] = 18
env.viewer.cam.lookat[1] = 12
env.viewer.cam.distance = 50
env.viewer.cam.elevation = -90
elif "ultra" in env_name:
env.viewer.cam.lookat[0] = 26
env.viewer.cam.lookat[1] = 18
env.viewer.cam.distance = 70
env.viewer.cam.elevation = -90
else:
raise NotImplementedError
elif "kitchen" in env_name:
if "visual" in env_name:
from hilp.d4rl_utils import kitchen_render
orig_env_name = env_name.split("visual-")[1]
env = d4rl_utils.make_env(orig_env_name)
dataset = dict(np.load(f"data/d4rl_kitchen_rendered/{orig_env_name}.npz"))
dataset = d4rl_utils.get_dataset(
env, env_name, dataset=dataset, filter_terminals=True
)
state = env.reset()
# Random example state from the dataset for proprioceptive states
goal_state = [
-2.3403780e00,
-1.3053924e00,
1.1021180e00,
-1.8613019e00,
1.5087037e-01,
1.7687809e00,
1.2525779e00,
2.9698312e-02,
3.0899283e-02,
3.9908718e-04,
4.9550228e-05,
-1.9946630e-05,
2.7519276e-05,
4.8786267e-05,
3.2835731e-05,
2.6504624e-05,
3.8422750e-05,
-6.9888681e-01,
-5.0150707e-02,
3.4855098e-01,
-9.8701166e-03,
-7.6958216e-03,
-8.0031347e-01,
-1.9142720e-01,
7.2064394e-01,
1.6191028e00,
1.0021452e00,
-3.2998802e-04,
3.7205056e-05,
5.3616576e-02,
]
goal_state[9:] = state[39:] # Set goal object states
env.sim.set_state(np.concatenate([goal_state, env.init_qvel]))
env.sim.forward()
goal_info = {
"ob": kitchen_render(env).astype(np.float32),
}
env.reset()
else:
env = d4rl_utils.make_env(env_name)
dataset = d4rl_utils.get_dataset(env, env_name, filter_terminals=True)
dataset = dataset.copy(
{
"observations": dataset["observations"][:, :30],
"next_observations": dataset["next_observations"][:, :30],
}
)
else:
raise NotImplementedError
return env, dataset, aux_env, goal_info
def get_restore_path(env_name, base_path="hilp_checkpoints", visual=False, seed=0):
if "mixed" in env_name:
path = os.path.join(base_path, "Mixed")
elif "partial" in env_name:
path = os.path.join(base_path, "Partial")
elif "complete" in env_name:
path = os.path.join(base_path, "Complete")
elif "antmaze" in env_name and visual:
path = os.path.join(base_path, "VAM")
elif "antmaze" in env_name and not visual:
if len(env_name.split("-")) == 5:
env_name = env_name[:-2]
path = os.path.join(base_path, env_name)
else:
assert False, f"invalid environment name '{env_name}'"
for dirname in os.listdir(path):
p = os.path.join(path, dirname)
if os.path.isdir(p) and dirname.startswith(f"sd{seed:03d}"):
return os.path.abspath(p)
def load_hilp_agent(
config, restore_path, image_dataset=None, restore_epoch=500000, visual=False
):
env_name = config.env_name
if env_name.endswith("-2") or env_name.endswith("-3") or env_name.endswith("-4"):
env_name = env_name[:-2]
env, dataset, _, _ = get_env_and_dataset(env_name, visual=visual)
if image_dataset is not None:
dataset = dataset.copy(
{
"observations": dict(
position=dataset["observations"][:, :2],
state=dataset["observations"][:, 2:],
pixels=image_dataset["images"],
),
"next_observations": dict(
position=dataset["next_observations"][:, :2],
state=dataset["next_observations"][:, 2:],
pixels=image_dataset["next_images"],
),
}
)
env.reset()
example_batch = dataset.sample(1)
agent = learner.create_learner(
config.seed,
example_batch["observations"],
example_batch["actions"],
lr=config.lr,
value_hidden_dims=(config.value_hidden_dim,) * config.value_num_layers,
actor_hidden_dims=(config.actor_hidden_dim,) * config.actor_num_layers,
discount=config.discount,
tau=config.tau,
expectile=config.expectile,
use_layer_norm=config.use_layer_norm,
skill_dim=config.skill_dim,
skill_expectile=config.skill_expectile,
skill_temperature=config.skill_temperature,
skill_discount=config.skill_discount,
encoder=config.encoder,
)
candidates = glob.glob(restore_path)
if len(candidates) == 0:
raise Exception(f"Path does not exist: {restore_path}")
if len(candidates) > 1:
raise Exception(f"Multiple matching paths exist for: {restore_path}")
if restore_epoch is None:
restore_path = candidates[0] + "/params.pkl"
else:
restore_path = candidates[0] + f"/params_{restore_epoch}.pkl"
with open(restore_path, "rb") as f:
load_dict = pickle.load(f)
agent = flax.serialization.from_state_dict(agent, load_dict["agent"])
print(f"Restored from {restore_path}")
return agent