-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_finetuning_supe_hilp.py
499 lines (425 loc) · 17.6 KB
/
train_finetuning_supe_hilp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
#! /usr/bin/env python
import gym
import jax
import jax.numpy as jnp
import matplotlib.pyplot as plt
import numpy as np
import tqdm
from absl import app, flags, logging
from flax.training import checkpoints
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from ml_collections import config_flags
import wandb
from get_hilp_agent import (get_default_config, get_restore_path,
load_hilp_agent)
from supe.agents import RM, RND, SACLearner # NOQA
from supe.data import ChunkDataset, D4RLDataset, ReplayBuffer
from supe.evaluation import evaluate
from supe.pretraining.opal import OPAL
from supe.utils import (add_prefix, check_overlap, combine,
view_data_distribution)
from supe.visualization import (get_canvas_image, get_env_and_dataset,
plot_data_directions, plot_q_values,
plot_rnd_reward, plot_trajectories)
from supe.wrappers import (MaskKitchenGoal, MetaPolicyActionWrapper,
TanhConverter, wrap_gym)
logging.set_verbosity(logging.FATAL)
FLAGS = flags.FLAGS
flags.DEFINE_string("project_name", "hilp", "wandb project name.")
flags.DEFINE_string("env_name", "antmaze-large-diverse-v2", "D4rl dataset name.")
flags.DEFINE_float("offline_ratio", 0.5, "Offline ratio.")
flags.DEFINE_integer("seed", 1, "Random seed.")
flags.DEFINE_integer("eval_episodes", 10, "Number of episodes used for evaluation.")
flags.DEFINE_integer("log_interval", 1000, "Logging interval.")
flags.DEFINE_integer("eval_interval", 10000, "Eval interval.")
flags.DEFINE_integer("batch_size", 256, "Mini batch size.")
flags.DEFINE_integer("max_steps", int(3e5), "Number of training steps.")
flags.DEFINE_integer(
"start_training", 5000, "Number of training steps to start training."
)
flags.DEFINE_boolean("tqdm", True, "Use tqdm progress bar.")
flags.DEFINE_boolean("save_video", False, "Save videos during evaluation.")
flags.DEFINE_integer("utd_ratio", 20, "Update to data ratio.")
flags.DEFINE_string("offline_relabel_type", "gt", "one of [gt/pred/min]")
flags.DEFINE_boolean("use_rnd_offline", False, "Whether to use rnd offline.")
flags.DEFINE_boolean("use_rnd_online", False, "Whether to use rnd online.")
flags.DEFINE_integer(
"hpolicy_horizon",
4,
"each high level action is kept fixed for how many time steps",
)
flags.DEFINE_bool(
"interpolate", False, "wheter to interolate skills from intermediate states"
)
flags.DEFINE_integer("updates_per_step", 4, "Number of updates per step")
flags.DEFINE_bool("debug", False, "Whether to be in debug mode")
flags.DEFINE_bool("vision", False, "Whether to use vision based environment")
config_flags.DEFINE_config_file(
"config",
"configs/rlpd_config.py",
"File path to the training hyperparameter configuration.",
lock_config=False,
)
config_flags.DEFINE_config_file(
"rm_config",
"configs/rm_config.py",
"File path to the training hyperparameter configuration.",
lock_config=False,
)
config_flags.DEFINE_config_file(
"rnd_config",
"configs/rnd_config.py",
"File path to the training hyperparameter configuration.",
lock_config=False,
)
config_flags.DEFINE_config_file(
"opal_config",
"configs/opal_config.py",
"File path to the opal hyperparameter configuration.",
lock_config=False,
)
def main(_):
assert FLAGS.offline_ratio <= 1.0
wandb.init(project=FLAGS.project_name)
wandb.config.update(FLAGS)
if FLAGS.debug:
FLAGS.max_steps = 1000
FLAGS.eval_episodes = 1
FLAGS.start_training = 10
FLAGS.eval_interval = 10
FLAGS.log_interval = 10
FLAGS.save_video = False
########### LOWER LEVEL ENVIRONMENT ###########
env = gym.make(FLAGS.env_name)
eval_env = gym.make(FLAGS.env_name)
env = gym.wrappers.RecordEpisodeStatistics(env, deque_size=1)
env = wrap_gym(env, rescale_actions=True)
eval_env = wrap_gym(eval_env, rescale_actions=True)
if "kitchen" in FLAGS.env_name:
env = MaskKitchenGoal(env)
env.env.env.env.env.env.env.env.env.REMOVE_TASKS_WHEN_COMPLETE = False
eval_env = MaskKitchenGoal(eval_env)
########### LOWER LEVEL AGENT ###########
observation_space, action_space = eval_env.observation_space, eval_env.action_space
observations, actions = observation_space.sample(), action_space.sample()
rng = jax.random.PRNGKey(FLAGS.seed)
agent_rng, rng = jax.random.split(rng)
agent = OPAL.create(
FLAGS.opal_config,
agent_rng,
observations,
actions,
chunk_size=FLAGS.hpolicy_horizon,
)
skill_agent_config = get_default_config()
skill_agent_config.env_name = FLAGS.env_name
hilp_agent_path = get_restore_path(FLAGS.env_name, seed=FLAGS.seed)
print(hilp_agent_path)
agent = load_hilp_agent(
skill_agent_config,
hilp_agent_path,
restore_epoch=1000000 if "antmaze" in FLAGS.env_name else 500000,
)
skill_dim = skill_agent_config.skill_dim
########### META ENVIRONMENT ###########
rng, episode_rng = jax.random.split(rng)
meta_env = MetaPolicyActionWrapper(
env,
agent,
episode_rng,
FLAGS.hpolicy_horizon,
subtract_one="antmaze"
in FLAGS.env_name, # if this is not antmaze, we do not want to subtract 1 from reward
hilp=True,
skill_dim=skill_dim,
)
meta_env.seed(FLAGS.seed)
rng, eval_rng = jax.random.split(rng)
eval_meta_env = MetaPolicyActionWrapper(
eval_env,
agent,
eval_rng,
FLAGS.hpolicy_horizon,
eval=True,
hilp=True,
skill_dim=skill_dim,
)
eval_meta_env.seed(FLAGS.seed + 42)
original_ds = D4RLDataset(
env,
subtract_one="antmaze" in FLAGS.env_name,
remove_kitchen_goal="kitchen" in FLAGS.env_name,
)
tanh_converter = TanhConverter()
ds = ChunkDataset.create(
original_ds,
chunk_size=FLAGS.hpolicy_horizon,
agent=agent,
tanh_converter=tanh_converter,
discount=0.99,
batch_size=32768,
label_skills=True,
debug=FLAGS.debug,
skill_dim=skill_dim,
hilp=True,
)
if "antmaze" in FLAGS.env_name:
viz_env, viz_dataset = get_env_and_dataset(FLAGS.env_name)
coords, S = viz_env.get_coord_list()
ds_minr = ds.sample(None)["rewards"].min()
print(f"Dataset minimum reward = {ds_minr}")
########### MODELS ###########
kwargs = dict(FLAGS.config)
model_cls = kwargs.pop("model_cls")
meta_agent = globals()[model_cls].create(
FLAGS.seed, observation_space, meta_env.action_space, **kwargs
)
meta_replay_buffer = ReplayBuffer(
meta_env.observation_space,
meta_env.action_space,
FLAGS.max_steps,
)
meta_replay_buffer.seed(FLAGS.seed)
if FLAGS.use_rnd_offline or FLAGS.use_rnd_online:
kwargs = dict(FLAGS.rnd_config)
model_cls = kwargs.pop("model_cls")
rnd = globals()[model_cls].create(
FLAGS.seed + 123,
meta_env.observation_space,
meta_env.action_space,
**kwargs,
)
else:
rnd = None
if FLAGS.offline_relabel_type == "gt":
rm = None
else:
kwargs = dict(FLAGS.rm_config)
model_cls = kwargs.pop("model_cls")
rm = globals()[model_cls].create(
FLAGS.seed + 123,
meta_env.observation_space,
meta_env.action_space,
**kwargs,
)
# Train meta policy
observation, done = meta_env.reset(), False
online_trajs = []
online_traj = [observation]
env_step = 0
record_step = 0
for i in tqdm.tqdm(
range(0, FLAGS.max_steps + 1, FLAGS.hpolicy_horizon),
smoothing=0.1,
disable=not FLAGS.tqdm,
):
record_step += 1
if i < FLAGS.start_training:
action = np.clip(
np.random.rand(skill_dim) * 2 - 1.0, -1.0 + 1e-6, 1.0 - 1e-6
)
else:
action, meta_agent = meta_agent.sample_actions(observation)
arctanh_action = tanh_converter.from_tanh(action)
a_action = arctanh_action / np.linalg.norm(arctanh_action)
next_observation, reward, done, info = meta_env.step(a_action)
env_step += FLAGS.hpolicy_horizon
online_traj.append(next_observation)
timelimit_stop = "TimeLimit.truncated" in info
if not done or timelimit_stop:
mask = 1.0
else:
mask = 0.0
meta_replay_buffer.insert(
dict(
observations=observation,
actions=action,
rewards=reward,
masks=mask,
dones=done,
next_observations=next_observation,
)
)
if i % 50 == 0 and FLAGS.interpolate:
results = meta_env.process_buffer()
for (
observation_i,
next_observation_i,
reward_i,
done_i,
mask_i,
_, # info_i, unused
action_i,
) in results:
action_i = tanh_converter.to_tanh(action_i)
meta_replay_buffer.insert(
dict(
observations=observation_i,
actions=action_i,
rewards=reward_i,
masks=mask_i,
dones=done_i,
next_observations=next_observation_i,
)
)
if rnd is not None and i >= 2 * FLAGS.start_training:
rnd, _ = rnd.update(
{
"observations": observation_i[None],
"actions": action_i[None],
"next_observations": next_observation_i[None],
"rewards": np.array(reward_i)[None],
"masks": np.array(mask_i)[None],
"dones": np.array(done_i)[None],
}
)
if i >= FLAGS.start_training:
for _ in range(FLAGS.updates_per_step):
online_batch_size = int(
FLAGS.batch_size * FLAGS.utd_ratio * (1 - FLAGS.offline_ratio)
)
online_batch = meta_replay_buffer.sample(online_batch_size)
online_batch = online_batch.unfreeze()
if FLAGS.use_rnd_online:
online_rnd_reward = rnd.get_reward(
online_batch["observations"], online_batch["actions"]
)
online_batch["rewards"] += online_rnd_reward
batch = online_batch
# append offline batch
if FLAGS.offline_ratio > 0:
offline_batch_size = int(
FLAGS.batch_size * FLAGS.utd_ratio * FLAGS.offline_ratio
)
offline_batch = ds.sample(offline_batch_size)
offline_batch = offline_batch.unfreeze()
if FLAGS.offline_relabel_type == "gt":
pass
elif FLAGS.offline_relabel_type == "pred":
offline_batch["rewards"] = rm.get_reward(
offline_batch["observations"], offline_batch["actions"]
)
offline_batch["masks"] = rm.get_mask(
offline_batch["observations"], offline_batch["actions"]
)
elif FLAGS.offline_relabel_type == "min":
offline_batch["rewards"] = ds_minr * np.ones_like(
offline_batch["rewards"]
)
offline_batch["masks"] = rm.get_mask(
offline_batch["observations"], offline_batch["actions"]
)
else:
raise NotImplementedError
if FLAGS.use_rnd_offline:
offline_rnd_reward, offline_rnd_stats = rnd.get_reward(
offline_batch["observations"],
offline_batch["actions"],
stats=True,
)
offline_batch["rewards"] += offline_rnd_reward
batch = combine(offline_batch, batch)
meta_agent, update_info = meta_agent.update(batch, FLAGS.utd_ratio)
if i % FLAGS.log_interval == 0:
for k, v in update_info.items():
wandb.log(add_prefix("agent/", {k: v}), step=record_step)
# For consistency with old antmaze experiments, don't have compute to rerun those experiments
start_training_rm = (
2 * FLAGS.start_training
if "antmaze" in FLAGS.env_name
else FLAGS.start_training
)
if i >= start_training_rm and rm is not None:
# need to remove optimism bias from rewards for training RM
if rnd is not None:
if FLAGS.use_rnd_online:
online_batch["rewards"] -= online_rnd_reward
if FLAGS.use_rnd_offline:
offline_batch["rewards"] -= offline_rnd_reward
rm, rm_update_info = rm.update(online_batch, FLAGS.utd_ratio)
rm_update_info.update(rm.evaluate(offline_batch))
if i >= 2 * FLAGS.start_training and (rm is not None or rnd is not None):
if rnd is not None:
rnd, rnd_update_info = rnd.update(
{
"observations": observation[None],
"actions": action[None],
"next_observations": next_observation[None],
"rewards": np.array(reward)[None],
"masks": np.array(mask)[None],
"dones": np.array(done)[None],
}
)
if FLAGS.use_rnd_offline:
rnd_update_info.update(offline_rnd_stats)
if i % FLAGS.log_interval == 0:
if rm is not None:
for k, v in rm_update_info.items():
wandb.log(add_prefix("rm/", {k: v}), step=record_step)
if rnd is not None:
for k, v in rnd_update_info.items():
wandb.log(add_prefix("rnd/", {k: v}), step=record_step)
if i % FLAGS.log_interval == 0:
wandb.log({"env_step": env_step}, step=record_step)
observation = next_observation
if done or timelimit_stop:
online_trajs.append({"observation": np.stack(online_traj, axis=0)})
observation, done = meta_env.reset(), False
online_traj = [observation]
for k, v in info["episode"].items():
decode = {"r": "return", "l": "length", "t": "time"}
wandb.log(add_prefix("episode/", {decode[k]: v}), step=record_step)
if i % FLAGS.eval_interval == 0:
offline_batch = ds.sample(FLAGS.batch_size)
if rnd is not None and "antmaze" in FLAGS.env_name:
rnd_reward_plot = wandb.Image(
plot_rnd_reward(viz_env, offline_batch, rnd)
)
wandb.log(
{f"visualize/rnd_reward_plot": rnd_reward_plot},
step=record_step,
)
if "antmaze" in FLAGS.env_name:
q_value_plot = wandb.Image(
plot_q_values(viz_env, offline_batch, meta_agent)
)
wandb.log({f"visualize/q_value_plot": q_value_plot}, step=record_step)
eval_info, trajs = evaluate(
meta_agent,
eval_meta_env,
num_episodes=FLAGS.eval_episodes,
save_video=FLAGS.save_video,
tanh_converter=tanh_converter,
hilp=True,
)
for k, v in eval_info.items():
wandb.log({f"evaluation/{k}": v}, step=record_step)
if "antmaze" in FLAGS.env_name:
num_overlapped = 0
for x, y in coords:
coord = jnp.array([x, y])
overlapped = False
for batch in meta_replay_buffer.get_iter(FLAGS.batch_size):
if check_overlap(coord, batch["observations"], S / 2):
overlapped = True
break
if overlapped:
num_overlapped += 1
wandb.log({"coverage": num_overlapped / len(coords)}, step=record_step)
fig = plt.figure(tight_layout=True, figsize=(4, 4), dpi=200)
canvas = FigureCanvas(fig)
plot_trajectories(viz_env, viz_dataset, online_trajs, fig, plt.gca())
online_trajs = []
image = wandb.Image(get_canvas_image(canvas))
wandb.log({f"visualize/trajs": image}, step=record_step)
plt.close(fig)
data_distribution_im = view_data_distribution(viz_env, ds)
image = wandb.Image(data_distribution_im)
wandb.log({f"visualize/offline_data_dist": image}, step=record_step)
data_directions_im = plot_data_directions(viz_env, ds)
image = wandb.Image(data_directions_im)
wandb.log(
{f"visualize/offline_data_directions": image}, step=record_step
)
if __name__ == "__main__":
app.run(main)