diff --git a/task_1-7.ipynb b/task_1-7.ipynb new file mode 100644 index 0000000..56e024f --- /dev/null +++ b/task_1-7.ipynb @@ -0,0 +1,1256 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "431b73df", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "d89e36d1", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
| \n", + " | salary | \n", + "educationType | \n", + "jobTitle | \n", + "qualification | \n", + "gender | \n", + "dateModify | \n", + "skills | \n", + "otherInfo | \n", + "
|---|---|---|---|---|---|---|---|---|
| 0 | \n", + "60000 | \n", + "Высшее | \n", + "Специалист пресс-службы | \n", + "Магистр | \n", + "Мужской | \n", + "2021-04-01 | \n", + "<p>Аналитическое мышление, <span cla... | \n", + "NaN | \n", + "
| 1 | \n", + "85000 | \n", + "Высшее | \n", + "менеджер проектов | \n", + "NaN | \n", + "Мужской | \n", + "2021-04-01 | \n", + "NaN | \n", + "NaN | \n", + "
| 2 | \n", + "15000 | \n", + "Среднее профессиональное | \n", + ".... | \n", + "NaN | \n", + "Женский | \n", + "2021-06-01 | \n", + "NaN | \n", + "NaN | \n", + "
| 3 | \n", + "30000 | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "Женский | \n", + "2021-04-03 | \n", + "NaN | \n", + "NaN | \n", + "
| 4 | \n", + "45000 | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "Мужской | \n", + "2021-06-28 | \n", + "NaN | \n", + "NaN | \n", + "
| ... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
| 32678 | \n", + "15000 | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "Женский | \n", + "2021-06-23 | \n", + "NaN | \n", + "NaN | \n", + "
| 32679 | \n", + "13000 | \n", + "Среднее | \n", + "уборщица | \n", + "NaN | \n", + "Женский | \n", + "2021-07-29 | \n", + "NaN | \n", + "NaN | \n", + "
| 32680 | \n", + "16000 | \n", + "Среднее профессиональное | \n", + "кочегар машинист котельной | \n", + "NaN | \n", + "Мужской | \n", + "2021-11-11 | \n", + "NaN | \n", + "NaN | \n", + "
| 32681 | \n", + "35000 | \n", + "Высшее | \n", + "NaN | \n", + "NaN | \n", + "Мужской | \n", + "2020-04-21 | \n", + "NaN | \n", + "NaN | \n", + "
| 32682 | \n", + "30000 | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "Мужской | \n", + "2021-06-20 | \n", + "NaN | \n", + "NaN | \n", + "
32683 rows × 8 columns
\n", + "Аналитическое мышление, Аналитическое мышление, Коммуникабельность
\n", + "13Ответственность в работе
\n", + "21Усидчивость, умение удерживать в памяти нуж...\n", + " ... \n", + "32665
Отвественность
Исполнительность
исполнительный
\n", + "32674Нацелен на результат. Считаю себя командным...\n", + "32675
трудоспособен
\n", + "Name: skills, Length: 8972, dtype: object" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "works['skills'].dropna()" + ] + }, + { + "cell_type": "markdown", + "id": "58a3bc5d", + "metadata": {}, + "source": [ + "### 5.Вывести зарплату только у тех, у которых в скиллах есть Python (Питон)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "b93d618d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "230 35000\n", + "334 20000\n", + "2394 35000\n", + "8096 15000\n", + "9014 25000\n", + "9667 90000\n", + "20930 30000\n", + "22530 50000\n", + "28286 23000\n", + "30430 23000\n", + "Name: salary, dtype: int64" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = works.skills.dropna().str.lower().str.contains('python|питон')\n", + "works[works.skills.notna()][df]['salary']" + ] + }, + { + "cell_type": "markdown", + "id": "cc98d1b7", + "metadata": {}, + "source": [ + "### 6.Построить перцентили по заработной плате у мужчин и женщин" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "92355509", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "percentiles = np.linspace(.1, 1, 10)\n", + "percentiles" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "4772a178", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "| \n", + " | salary | \n", + "
|---|---|
| 0.1 | \n", + "15000.0 | \n", + "
| 0.2 | \n", + "20000.0 | \n", + "
| 0.3 | \n", + "25000.0 | \n", + "
| 0.4 | \n", + "30000.0 | \n", + "
| 0.5 | \n", + "30000.0 | \n", + "
| 0.6 | \n", + "35000.0 | \n", + "
| 0.7 | \n", + "40000.0 | \n", + "
| 0.8 | \n", + "50000.0 | \n", + "
| 0.9 | \n", + "60000.0 | \n", + "
| 1.0 | \n", + "1000000.0 | \n", + "
| \n", + " | salary | \n", + "
|---|---|
| 0.1 | \n", + "15000.0 | \n", + "
| 0.2 | \n", + "18000.0 | \n", + "
| 0.3 | \n", + "20000.0 | \n", + "
| 0.4 | \n", + "22000.0 | \n", + "
| 0.5 | \n", + "25000.0 | \n", + "
| 0.6 | \n", + "30000.0 | \n", + "
| 0.7 | \n", + "30000.0 | \n", + "
| 0.8 | \n", + "35000.0 | \n", + "
| 0.9 | \n", + "47000.0 | \n", + "
| 1.0 | \n", + "900000.0 | \n", + "
| \n", + " | salary | \n", + "educationType | \n", + "jobTitle | \n", + "qualification | \n", + "gender | \n", + "dateModify | \n", + "skills | \n", + "otherInfo | \n", + "
|---|---|---|---|---|---|---|---|---|
| 0 | \n", + "60000 | \n", + "Высшее | \n", + "Специалист пресс-службы | \n", + "Магистр | \n", + "Мужской | \n", + "2021-04-01 | \n", + "<p>Аналитическое мышление, <span cla... | \n", + "NaN | \n", + "
| 1 | \n", + "85000 | \n", + "Высшее | \n", + "менеджер проектов | \n", + "NaN | \n", + "Мужской | \n", + "2021-04-01 | \n", + "NaN | \n", + "NaN | \n", + "
| 2 | \n", + "15000 | \n", + "Среднее профессиональное | \n", + ".... | \n", + "NaN | \n", + "Женский | \n", + "2021-06-01 | \n", + "NaN | \n", + "NaN | \n", + "
| 3 | \n", + "30000 | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "Женский | \n", + "2021-04-03 | \n", + "NaN | \n", + "NaN | \n", + "
| 4 | \n", + "45000 | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "Мужской | \n", + "2021-06-28 | \n", + "NaN | \n", + "NaN | \n", + "
| ... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
| 32678 | \n", + "15000 | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "Женский | \n", + "2021-06-23 | \n", + "NaN | \n", + "NaN | \n", + "
| 32679 | \n", + "13000 | \n", + "Среднее | \n", + "уборщица | \n", + "NaN | \n", + "Женский | \n", + "2021-07-29 | \n", + "NaN | \n", + "NaN | \n", + "
| 32680 | \n", + "16000 | \n", + "Среднее профессиональное | \n", + "кочегар машинист котельной | \n", + "NaN | \n", + "Мужской | \n", + "2021-11-11 | \n", + "NaN | \n", + "NaN | \n", + "
| 32681 | \n", + "35000 | \n", + "Высшее | \n", + "NaN | \n", + "NaN | \n", + "Мужской | \n", + "2020-04-21 | \n", + "NaN | \n", + "NaN | \n", + "
| 32682 | \n", + "30000 | \n", + "NaN | \n", + "NaN | \n", + "NaN | \n", + "Мужской | \n", + "2021-06-20 | \n", + "NaN | \n", + "NaN | \n", + "
32683 rows × 8 columns
\n", + "Аналитическое мышление, "
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "names = managers_list.index.tolist()\n",
+ "values = managers_list.tolist()\n",
+ "\n",
+ "fig = plt.figure()\n",
+ "fig.set_figwidth(7)\n",
+ "plt.bar(names, values)\n",
+ "plt.title('ТОП-5 образований, после которых становятся менеджерами') \n",
+ "plt.xlabel('Должность') \n",
+ "plt.ylabel('Количество человек') \n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "617ea494",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbYAAAEWCAYAAAAKFbKeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAnyElEQVR4nO3dd7wdVbn/8c+XUIVQQgIGDATpWAgY6SIIculF2kWk/cSISruC9CtFQRQQBERB6pUiQUARkCKSAIJAAkiLXMoNBAgkIZRQQgnP74+1Npns7H3OZJ+zz0km3/frdV5n7ylrnpk9e55Za2avUURgZmZWFfP0dgBmZmbdyYnNzMwqxYnNzMwqxYnNzMwqxYnNzMwqxYltNiBpvt6OwcysKpzYeoGkPpKOkvQvSa8AL0pasLfj6g2S1pC0dd4m/ylpmd6OyczmbHNUYpP0duHvY0nvFd7vmadZQ9INkt6UNEXSnZI2KJQxWFLUlfW2pA8l/bSDZV8q6YO6efq0uCq/Br4O7BQRn46IpSNiaotlzekmAscBk4C9gcm9G46ZzenmqMQWEYvU/oAXgO0Kw66QtCLwD+AxYAVgGeB64DZJ69cVt3hdeVeUCOEXxXkiYtqsroOkFYCdgB0j4rlZnb9qImJiRGwQEUtExNZzcYI3s24yRyW2Ek4A7ouIYyNickRMiYizgd8DP+/JQCR9R9IzkibnGmStie3LwHigVqt8QtL2hfkulfRbSbfnGudIScsXxv9K0jhJb0kaLekrhXGHSHolz/eopK8Wxm0g6cG8zAfrarEjJE3NtdAJkk4ujNtG0sN5eeMknVAYV6v9zlsYdnltGkmbSHqxMG63PP3++f2+ku4pjD8ij9+85DYeW1drnyppRMl17ifpEkkvS3pd0p8arFet3GmFmOfJzcjPSnpN0nBJ/ZrEV7/+v8if54L5/ep5279R3A8k7V637Npn83Yev4Cks3LsL+fXCxSXKekYSZPyNtqzEMOljVomJO1f23Z5u02SNCi/XzPHuFqT9fxc3l8nS3o1L3t9zdgaUmztWE7SipL+nrfhJElXSFq87rPdvPD+k/hKfLYd7c+flnRbXp9abCdIWqYQ3wd5eO39V/K8O0h6ROm78KykLQuf4z/y8Npntm+TbTXD9pd0swrfoRz7/oXxm0sam18vJOleSYfl94Pr5j1L0rWS5snvVyt8Lk9J2q2DOFaSFIX3i0m6SNJ4SS9J+qlyC5XS9/Yfks7J2//fkjYrzLufpDFKx6HnJH23MG6THPOvCsPWyMMub7Je6+T3TVvU6lUtsX0duKbB8OHAhpI+1cXyv593ktGSdm42kaSvAT8DdgMGAs8Df8ijPwWsCdwODAAOAq6QtGqhiD2BnwD9gUeYsTb5IDAE6AdcCVyj6dfn/gKsCiwKnAf8MsfTD7gJOBtYMg+/SdKShXIPzDXXjYDDJH0+D3+H1ES4OLAN8D1JO3awjZptk/nyOo1vMn4J4GDgjVksertCrfvAQnmdrfPvSZ/F54ClgDMLZda+F4vlcu8ujDsY2BH4KqlF4HVS03KHJB0JbJ7jnZq3x1+A2/LyP9kPIuLqwjrdTf5s8nuAY4H1SPvBmsA6pObcmk+T9p1lgX2AC+r2rw5FxL3A+cBlkhYibavjIuLfDdarL/A34Ja8PVYC7oiI++paQ4qtHS8AIn1HlgFWBwaRTkw71cX9+VBgGjAwj786r/PLhXhPAa4uxHu3pHWA/wF+RPoubAyMzWUeD4wB+uX57yu5HpsAXywzbY7xPWB7YJikXerKOhhYF/hWRHwsaWHSMeZK0v61B3CepM+VXNxlwEekz3MtYAtg/8L4dYHnSPvZ8cB1mn6CNwHYlnQc2g84U9LahXknAlspn4zlcsd0EMsvgJdKxg1UL7H1p/GBczxpXZfoQtlnAyuTdpL/Bi6VtGGTafcELo6IhyLifeBoYH1Jg/P4V4FTI+KDiPg7cCNpx6u5KSLuyvMem+cdBBARl0fEaxHxUUScASxASmZExHMR8WYuQ8BD+fU2wNMR8fs831XAv4HtGsQ+L+mL/2Yuc0REPBYRH0fEo8BVpIP6rPoucD/wv03GHwtcXFtuN2i6zpIGAlsBB0TE6xHxYUSMLMw7P/Bxk6bm7wLHRsSL+fM5AdhFhVprvXwGfjiwZUS8lQevByxCx/tBM3sCJ0XEhIiYCJwI7FU3zX9HxPt5vW4inWTNihOAxYAHgJdpnry3BV6JiDMiYmpuJbm/s8Ij4pmIuD3HOJGUnMruVy3vz6TvxTzM+rHv26Tv9O35u/BSIdEL6DMrZUoS6YD941kJIiImkbb5JUCtlrpjLmf7nPzI04yNiEvyNnoIuBbYhU5IWpr0/Tg0It6JiAmkE7//LEw2ATgrf3euBp4ifS5ExE0R8WwkI0knb18pzPsBcDPwDUnz52X9qUks25K26986i7uoaoltEqmGVG8g8DHp7LpTSk2BtWaIYwBykqollJtJZ6HfaFLEMqRaGnnet4HXSGfQ7wPjIuLjwvTP53E14+rmnZzLRNJhuZr/pqQ3SAef/oXYjwLeJdWObmwUT5Nlnp3Le4L0BR6Xy1tX6QaciZLeBA4oLi+bpNS08wYNDqD5rP4I0gnBTCQtl+c7rdH4FnW0zoOAyRHRbH/oR/N9ZXng+sL6jiEdOJduMv0A0nq/S6phFePrbD9opn7dns/Dal6PiHc6GH94jv9VSdfV1XQAiIgPgUuBzwNnRDTtLX0Q8GyJmGcgaSlJf8jNXG8BlzPzfvWnwnY+uzC85f0ZOJ30WUxptr820dF6HgN8Fng3l7leifJ2Ix0T/t5g3NmF9f5Tg/GbAv8HnJvfn0Vq6RhamGZ5YN1aObmsPUm1+ZrDC+Meqpt3PmB8Yfz5pJP6mpfq9olP9jFJW0n6Z27degPYmpk/2wtJJws7kmr7HzRYz3lItfojGozrUNUS29+AXRsM34107e3dMoVExAGFZohTmk1GOlNr5GXSzgFAbhZYklSdfgEYpNwOni3HjFXtQYV5FyEdaF9Waus/Mq/PEhGxOOlM9JM4IuJUUhPbvsBwpesWM8TTZJkH5/L6ARtJqtUcrgRuAAZFxGLAbxusd/+IWDzPP7zB9vgRMDwi6g9GNT8lNVVNaTK+FR2t8zignwrXdOqsQvOa5Thgq9r65r8FI6JZU8k00hnpMFKTYN9CfJ3tB83Ur9tyeVjNEnmfazb+9PxZfZa0r/yofgGSliU1MV0CnFFoNqo3DlixRMz1fkb6Dn0xIhYFvsXM+9WOhf3q4MLwlvfnXDu8G/hrB/trI03XMyKeBf4FnJ/L/GcnZdWa5Y9sMv7gwnrvWBwhaSngJGB3pje970Fqzjs3Nx3X4h1Zt58uEhHfKxR3emE5xabCcaQT8P6FeReNiGIz5rK51lmzHOkYtQCpZng6sHQu+2bqPtuIeJy07x1HSnKN7As8FRGdbc+ZVC2xnQhsIOlkpZsD+ko6iHSNqNlOVIqkXSQtonTzwBakL+INTSa/EthP0pD8QZ8C3B8RY0nNce8AR0iaL7ezb8f0a3AAW0vaKFfTf5LnHQf0JbV7TwTmlfRjUjt2LcY1Ck1iC5FqqVNJO9Yqkr4paV5JuwNrML1GVzSNdMAZkN/3JdVupubrDN8stcGm60tqZz+5yfiVSO3159ePUL7QPIvLq2m6zhExHvgr6ZrDEvlz2DgvcxBwCE2aRkiJ/WTlG3okDZC0QwdxTI6IJyPiVuAOUvMTlNsPmrkKOC4vuz+pGeryumlOlDR/PhnalsbXnqeSai8zHAfyAetS4CLSWfV40n7YyI3ApyUdqnRTS19J65ZYh77A28AbOYnOlFw70PL+nC8HHAl8fxaWB2lb7Cdps3wMWFb5ZhpJ65ES0NEly9oLuDc37c+qM4HfRcQY4N487L6IGEFK2MfnYTeSttFeef+aT9KXJa3e2QLy9+M20gnNonl9V1ThZjRS7e3gXO6upOukN5Oa8RcgHaM+krQV6fpcI6cAf4uIJ5qMP5by23QGlUpsEfE06WLxmqQLu+OBnYH/iIh/dLH4Q0hnhG+Qmsy+k3emRnHcQWp+ujbHsCK5fToiPiJdAN6a1HT6a2CvmPHC/JWkHXQy8CVSEwLAraQD8v+Sqv5TKTRbkm5AmECqxR0L7Jave7xGOrgdRmr+OALYNrfX15yrdNfdWNL1iovy8O8DJ0maQjqAlj3DrVkUOLuDZr+lSTcmfNhg3CBKXoivV2Kd9wI+JK3rBNJNBZC28QhmvJmk6FekE5rb8jb5Jykxl/FDYFtJm0TEB6T9YCvSfnAesHc0uEGjgZ8Co4BHST9teSgPq3mF1JT6MqnJ/IC6cg9WulvzBWBB0tl10cGkz+W/c3PTfqSD+lfqpiPXsr9OSsqvAE+Tmso6cyKplvAm6RrgdSXmqS2zK/vz+aTrms1aD5ot8wHyjRA55pHA8ko3Af0OOCSmXz/tzBI0aZbviNJdouvQ/CTxcGAfSV/In8sWpOPOy6TP5uekpFPG3qQk9SRpX/ojM17muZ90z8GkHM8u+VLNFNL+MzzP902aVAAi4saI+GEHMdyYj+mzTM2bzq03SLoUeDEijuts2qqTdCFwTa7tWAm55nd5RHyml0OxilL6KcP+EbFRb8fSTNM7ucx6W0Ts3/lUZmYzqlRTpJmZmZsizcysUlxjMzOzSpkjrrH1798/Bg8e3NthmJnZbGT06NGTImJA/fA5IrENHjyYUaNG9XYYZmY2G5HU8Gcbboo0M7NKcWIzM7NKcWIzM7NKcWIzM7NKcWIzM7NKcWIzM7NKaVtikzRI6QGVYyQ9IemQPPwEpYcLPpL/tm5XDGZmNvdp5+/YPgIOi4iH8sMVR0u6PY87MyLqH5VhZmbWZW1LbPlhdePz6ymSxlDusfdmZmYt65GeR/JTa9ciPZxuQ+BASXuTHpZ4WKOHUEoaBgwDWG655boljsFH3dQt5cwJxp66TW+HYGbWK9p+84ikRUhPkj40P2H2N6QnSg8h1ejOaDRfRFwQEUMjYuiAATN1BWZmZtZQWxNbfmz6tcAVEXEdQES8GhHTIuJj0iPV12lnDGZmNndp512RAi4CxkTELwvDBxYm2wl4vF0xmJnZ3Ked19g2BPYCHpP0SB52DLCHpCFAAGOB77YxBjMzm8u0867IewA1GHVzu5ZpZmbmnkfMzKxSnNjMzKxSnNjMzKxSnNjMzKxSnNjMzKxSnNjMzKxSnNjMzKxSnNjMzKxSnNjMzKxSnNjMzKxSeuR5bDZn8XPrzGxO5hqbmZlVihObmZlVihObmZlVihObmZlVihObmZlVihObmZlVihObmZlVihObmZlVihObmZlVihObmZlVihObmZlVihObmZlVihObmZlVihObmZlVihObmZlVihObmZlVih80atYiP5DVbPbkGpuZmVWKE5uZmVWKE5uZmVWKE5uZmVVK2xKbpEGS7pQ0RtITkg7Jw/tJul3S0/n/Eu2KwczM5j7trLF9BBwWEasD6wE/kLQGcBRwR0SsDNyR35uZmXWLtiW2iBgfEQ/l11OAMcCywA7AZXmyy4Ad2xWDmZnNfXrkGpukwcBawP3A0hExHlLyA5ZqMs8wSaMkjZo4cWJPhGlmZhXQ9sQmaRHgWuDQiHir7HwRcUFEDI2IoQMGDGhfgGZmViltTWyS5iMltSsi4ro8+FVJA/P4gcCEdsZgZmZzl3beFSngImBMRPyyMOoGYJ/8eh/gz+2KwczM5j7t7CtyQ2Av4DFJj+RhxwCnAsMlfRt4Adi1jTGYmdlcpm2JLSLuAdRk9GbtWq6Zmc3dOm2KlLRsg2EHtCccMzOzrilzje0mSasBSFpV0khgSFujMjMza1GZpsg9gD9IuhPYFDg4Iu5qb1hmZmat6bTGFhFjgK2BrwGnOqmZmdnsrMw1tseAW4BFgd9LelTSo22PzMzMrAVlmiK3bXsUZmZm3aRMU+TzwCDga/n1u2XmMzMz6w1lmiKPB44Ejs6D5gMub2dQZmZmrSpT89oJ2B54ByAiXgb6tjMoMzOzVpVJbB9ERAABIGnh9oZkZmbWujKJbbik84HFJX0H+Bvwu/aGZWZm1ppO74qMiNMlfR14C1gV+HFE3N72yMzMzFpQqhPknMhuz/1GLtHekMzMzFpX5q7I0yRNkHQscBtwhaQz2x+amZnZrCtTY9sJ+DzwFDAQ+BBwzyNmZjZbKnPzyFsRMQEYGxFTI2Ia8H6b4zIzM2tJmRrbarlvyJXyfwGfbW9YZmZmrSmT2FZvexRmZmbdpGxfkYsD2+W/xfMwMzOz2U6ZuyIPAa4Alsp/l0s6qN2BmZmZtaJMU+S3gXUj4h0AST8H7gPOaWdgZmZmrShzV6SAaYX30/IwMzOz2U6ZGtslwP2Srs/vdwQualtEZmZmXVCmr8hfShoBbESqqe0XEQ+3OzAzM7NWdJrYJK2dX94zfZDWjoiH2heWmZlZa8o0RY4EHmTG62oBfK0tEZmZmXVBmcT2TEQ4iZmZ2RyhTGIbIOlQYCrwMnB/RLza1qjMzMxaVOZ2/98B/YAVgd2BByTt286gzMzMWlXmrsgTi+8l9QfuBi5tU0xmZmYtK1NjA0DSwgARMSki3DGymZnNlsr0FbmBpCeBMfn9mpLOa3tkZmZmLShTYzsT+A/gNYCI+BewcWczSbpY0gRJjxeGnSDpJUmP5L+tWw3czMyskVJNkRExrm7QtIYTzuhSYMsGw8+MiCH57+YyyzczMyurTGIbJ2kDICTNL+lwcrNkRyLiLmByVwM0MzObFWUS2wHAD4BlgReBIfl9qw6U9GhuqlyiC+WYmZnNpMwTtCdFxJ4RsXRELBUR34qI11pc3m9Iv4cbAowHzmg2oaRhkkZJGjVx4sQWF2dmZnObMp0gn0PqG3IGEXHwrC6s2GOJpN8BN3Yw7QXABQBDhw6daflmZmaNlGmKHAWMzn/bF17PMkkDC293Ah5vNq2ZmVkryvQ8clnttaRDi+87IukqYBOgv6QXgeOBTSQNIdUAxwLfnfWQzczMmiv7PDYBa5E6Qi4lIvZoMNhP3jYzs7Yq07v/GcDHwDhg37ZGY2Zm1kVlmiI37YlAzMzMukPpTpDNzMzmBE5sZmZWKU5sZmZWKWUeW7OYpDNrvYBIOkPSYj0RnJmZ2awqU2O7GHgL2C3/vQVc0s6gzMzMWlXmdv8VI2LnwvsTJT3SpnjMzMy6pEyN7T1JG9XeSNoQeK99IZmZmbWuTI3te8Bl+bqaSM9Y27edQZmZmbWqzA+0HwHWlLRofv9Wu4MyMzNrVZm+ItcAvgZcA5wkaUng5Ih4uN3Bmdmcb/BRN/V2CD1m7Knb9HYIRrlrbFcCqwL3Aw8Aw4EL2xmUmZlZq8oktnki4iDgg4i4KCKGl5zPzMysx5W5eWQRSd8A5pW0EympLdresMzMzFpTJrGNBLbL/7fPw+5qW0RmZmZdUCaxnRMRD7U9EjMzs25Q5lqZbxQxM7M5Rpka27ySliD9OPsTETG5PSGZmZm1rkxiWxUYzYyJLYDPtiUiMzOzLiiT2J6MiLXaHomZmVk38O/RzMysUsoktvXbHoWZmVk3KZPY/iJp8dobSUtIurV9IZmZmbWuTGIbEBFv1N5ExOvAUm2LyMzMrAvKJLZpkparvZG0POmuSDMzs9lOmbsijwXukTQyv98YGNa+kMzMzFpX5kGjt0haG1iP9Fu2/4qISW2PzMzMrAVlHjQqYEvgsxFxkqTlJK0TEQ+0Pzwzs7mDH8jafcpcYzuPdMv/Hvn9FODXbYvIzMysC8pcY1s3ItaW9DCkuyIlzd/muMzMzFpSpsb2oaQ+5DshJQ0APm5rVGZmZi0qk9jOBq4HlpJ0MnAPcEpbozIzM2tRmbsir5A0GtiMdFfkjhExprP5JF0MbAtMiIjP52H9gKuBwcBYYLf8g28zM7Nu0WmNLSejCcBVwJXAq3lYZy4l3U1ZdBRwR0SsDNyR35uZmXWbMjePjCZdXxMwEBhPieexRcRdkgbXDd4B2CS/vgwYARxZOlozM7NOlGmKXKH2WtLDXXw229IRMT6XO15S0z4nJQ0j93Cy3HLLNZvMzMxsBqWfx5Zv8e+x2/wj4oKIGBoRQwcMGNBTizUzszlcmZ5H/pJfrk66xtYVr0oamGtrA0nX7szMzLpNmWtsp5N+t/ZiRPxfF5d3A7APcGr+/+culmdmZjaDMontsdqL4t2QETG5o5kkXUW6UaS/pBeB40kJbbikbwMvALu2ELOZmVlTZRLbJOBV4D3SnZFQ7q7IPZqM2qx0dGZmZrOozM0jw4AXgTOAlSNihYjoMKmZmZn1lk4TW0RcCGwELADcK2nPtkdlZmbWojI9j3wD2IbUBdZvgCMl/avNcZmZmbWkzDW27erej25HIGZmZt2hTM8j+/VEIGZmZt2hzA+0b2g0PCK27/5wzMzMuqZMU+TqwP7tDsTMzKw7lElsUyJiZNsjMTMz6wZlfse2pqQ3JL0i6SFJ50jq3/bIzMzMWlDmd2x9gH7AisDuwCukZ6mZmZnNdko9tiYiPo6IdyLi6Yg4GbilzXGZmZm1pMw1NiRtD2yc346MiHPaF5KZmVnryvQ88jPgEODJ/HdwHmZmZjbbKVNj2wYYEhEfA0i6DHgYOLqdgZmZmbWi1DU2YPHC68XaEIeZmVm3KFNj+xnwsKQ7Sc9j2xg4pq1RmZmZtahMX5FXSRoBfJmU2I6MiFfaHZiZmVkrmjZFStqm9joixkfEDRHxZ+AdSb4r0szMZksdXWP7laRvFwdI+ibwKDChrVGZmZm1qKOmyK8AN0laFvgDcB7wAbB5RDzbE8GZmZnNqqY1togYD3yVlOAeBS6MiK2d1MzMbHbW4e3+ETEF2AoYDnxT0oI9EpWZmVmLmjZFSpoCRO0tsDAwWdI0ICJi0R6Iz8zMbJY0TWwR0bcnAzEzM+sOZXseMTMzmyM4sZmZWaU4sZmZWaU4sZmZWaU4sZmZWaU4sZmZWaU4sZmZWaU4sZmZWaWUedBot5M0FpgCTAM+ioihvRGHmZlVT68ktmzTiJjUi8s3M7MKclOkmZlVSm8ltgBukzRa0rBGE0gaJmmUpFETJ07s4fDMzGxO1VuJbcOIWJv0SJwfSNq4foKIuCAihkbE0AEDBvR8hGZmNkfqlcQWES/n/xOA64F1eiMOMzOrnh5PbJIWltS39hrYAni8p+MwM7Nq6o27IpcGrpdUW/6VEXFLL8RhZmYV1OOJLSKeA9bs6eWamdncwbf7m5lZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpTixmZlZpfRKYpO0paSnJD0j6ajeiMHMzKqpxxObpD7Ar4GtgDWAPSSt0dNxmJlZNfVGjW0d4JmIeC4iPgD+AOzQC3GYmVkFKSJ6doHSLsCWEbF/fr8XsG5EHFg33TBgWH67KvBUjwbaffoDk3o7iDmAt1M53k7leDuVM6dvp+UjYkD9wHl7IRA1GDZTdo2IC4AL2h9Oe0kaFRFDezuO2Z23UzneTuV4O5VT1e3UG02RLwKDCu8/A7zcC3GYmVkF9UZiexBYWdIKkuYH/hO4oRfiMDOzCurxpsiI+EjSgcCtQB/g4oh4oqfj6EFzfHNqD/F2KsfbqRxvp3IquZ16/OYRMzOzdnLPI2ZmVilObGZmVilObNYjJC0t6Q5JD0r6r96Ox8yqy9fYzMysWiLCfym5DwYez6/nA54DzgUuBXYpTPd4nnYQ8DDpl+8Ab+f/qwCjgAH5/beAB4BHgPOBPsXp8+uhwIj8emHgYtLPIh4GdsjD9wX+DNxC6oXl+Cbr8F5e1iPA/xTGjQUeA54srOc6wL15OfcCqxaWNRH4F/AMsEcefgJweKHMG4FN6tenwbZquG0bTP9J+cBmpB/uD+1ke+0PXEn64f++tXKBHwHnlNim5xbKPRfYN7/+EjASGE26g3dgHj4COCtvr8eBdRqsR3/gg/wZPFPbTsCNeXw/4M3CujYss0zcpJ/L3Jq36515mW+T9pFHgO3z8v4EPAr8E/hiYXv/Hvg78DTwnR76ngVwQH7fB3iJ9D0bAFyb1/dBYMMS+90WwH3AQ8A1wCJ1+9+TtW2Shy0K3A+sXfhe9M/LHgWs3FG5efqfk77TDwAr9cD2qn2nnwNOJ+3rp+X1ewzYve678Xae/oXCflLcZ1YFPgJ2AXZn+n76Zn59c4ltO5aZjyczfE69+eemyMaGkXaOpiJiHPAdYLikRQEkLUk6yO4dERMlrU7acTaMiCHANGDPTpZ9LPD3iPgysClwmqSF87h18vxDgF0lNeox4NmIGJL/9i4M7wN8Fdi6MOzfwMYRsRbwY+CUwrirI2JN4Ghg105inhWdbtvseNKXrUMRcSHpR/8n1oZJ2pGUSA7NgzrapjORNB9wDumE5kuk5HJyYZKFI2ID4Pt5XL0+wIv5M9+/wfijgefrhjUqs8O4JW0GHJLj/DAiNs3LHAXsmfeBG0jb5uGI+CJwDPA/heV+EdgGWB/4saRlmm2XbvQMsGN+vSUwLr/+FXBmXt+dgQs7KkRSf+A4YPOIWJu03j8sTNKH1H3fkNqAiHiL9J28SNJn8uAFSQfuwyPi6RLlvhUR65BOhM4qv9otezavw/qkBPUN0jFgTWBz0n4xME/bB3ggT//jJuX9hPTdJyKuLuynd+d9ZuuS27b+eDLb6I0utWZrkj4F7Af8BvhcHnyapOPy6xVr00bEKEnPAVeTrldeRzqAPJkn2Yx05v+gJICFgAl53EKSHqm9Bsbn11sA20s6PL9fEFguv749Il7LcV4HbETa4cpYCJhKOmOtWQy4TNLKpLPo+Qrjdpe0MemMcefC8P+S9K38egXSGWRxfUSq6RxaH0CTbTsTSTuTzti/VIy/yfaClJBfBu4i1XL2A7aIiGl5fEfbdHdJG+XXy5K256rA54Hb8+fWp255VwFExF2SFpW0eES8URi/CDC5ybotC6wHXF83aqYyO4n7C8DewD4RMaXRsgo2In+GEfF3SUtKWiyP+3NEvAe8J+lO0snTnzopr6veB56R9DlgL+ByUk1jc2CNvM0BFpXUN79utN+tR3pCyD/yPPOTahg1DT+HiBgr6RbgL6RteiHwYUSMyJN0Vu5Vhf9nzuK6t2LFvO/X1nsj4Kq8f78qaSTwZVJHF033PQBJXyIdqzo7bnS2DRodT2D65/QOcFhE/LPMCnY3J7aZHUr60eIHhWE/iog/Akh6vDYw15iWAW4mnXleA+wlaY2c3ARcFhFHN1jOe7UzyVxOLUEI2DkiZuj0WdK6zNynZqkLpJIWBOaJiHcLBw1IZ253RsROkgaTmsRqro6IA3PSu5F0sId0Rn16LvfG+vWRNC/wN9JBqt6hzLxt6/UBjiDVIv5YX35ebnF7AZxEqgXtRWoi3gc4RdImkdpIOtqmV0fugFvSubVRwBMRsX6TGDv7HFYg1SIbOZ603TcoUWZHca8OfJO0nn+NiKlNlgcd98/a0j7VDS4hfc7zAq/kYfMA6+dE+4m8zzba70Q62dujvvC8zy8UETO1DkgaRKpp/DLH8S9gNUlfj4jbOyo3iyav2+XZ/N36FCkh3dfBtB3tewA/JdW8juxkmZ1t20bHE8ifk6TNSdu3fj/vEW6KnNFipCaSRs1LM5A0D3A2cGBE/Bx4JyLOBQ4mNVEA3AHsImmpPE8/Sct3UvStwEHKe4yktQrjvp7LWCjH+Y+S67ULjb8Mi5Gub0Bq4mhkCrBkyeUQER+R2urnb7CsHel8234LuCkiSvU4LmkIsDbpszgXuCafhDzB9HXqaJs28hQwQNL6efr5cu2iZvc8fCPgzYh4s27+XUknA/VWBAZHxG0NxjUqs6O4h0fEjaTk36zJqeYuchO4pE2ASblJDmAHSQvmZvRNSDXltouI0cBSpMRScxvwyVM+8mfbkX8CG0paKU//KUmr5HE7ka5HN3IWcFREXEa6DnUaqUn3NEkLdFIu5M8q/+8oyXS390mXM54ntTT0kTQA2Bh4IO8nO9N434PUdDg+IsaUWFZH26DZ8aToNWY+BvQY19hm9BlSO/tHDc5E6h0A3BcRjxUHRsT9Sk8G3ysifp+bMG/LifBD4AfMfH2l6CekL96jeUcdC2ybx91Duti/EnBlRHTaDClpJ+B7NE5cvyA1Rf6QdANBUa2JbgHgsM6WQ2oqvIfUnDmWdFA+tTC+7LZdmpLNO3n7nAscFBFRV+4xwD2S/kzH23QmEfGB0uOVzs5NdvPm+Wtdv70u6V5SM8z/q4vp+6TriF9V6jpuEdKNCRcAq5GaSRtpVGaZuH9GOqj9ISIebVL2CcAlkh4F3iXVaGseAG4iNXH+JCJ6rEPyiNgKPnmUFaSTwl/nOOclJeQDOph/oqR9gatyQgI4Tuma90XA5GLztaSTyAfkiPhrXVljJQ0HjoiInzQqF/jf/HoBSfeTKgbNanXdqdYUuQBwO2m/+AWpphk55lck/YLUcrSspI9JNw0tJOnSXM7KpJaQTnWwbT9H8+MJwA+UrnF/itSK0it8u/8cIu9kQ6PuuXXWsySNICXohicVkk4g3bE5ojBsW6B/RFzaSpntkmN9u9bEVxW5VrpJRJxQGLYI6a7AfbtY9ljS93C2e4ZZTmAnRMTYwrADSXctjuilsHqFa2xm3euPTL9BqOYh0tm29YwnmfnhmVNJNy1V2W9IP9MpupV0aWCu4hqbmZlVim8eMTOzSnFiMzOzSnFiMzOzSnFiM+siSY9LelLSI5JeyncbmlkvcWIz6x5b5Z5ReqKLJTPrgBObWdfNR+oV4hNKTsu1ucck7V4Yt4mkN3MN7xVJh+feTW6XtE2eZoSkoZIWknS3pA3z8LFKHdQiqX/+XRW595BL8rIelrRpHt5H0ul5+KOSDpK0e172M4U4bs7Tl+mg2my25t+xmXVdX1LXY0XFHtj7kzrCvisixpP6wxwZEdvXmi0j4kNJu5F6qan1di9ST/znR0Rn3af9IJfzBUmr5XJWIfV0sgKwVu71pV9ETAauzj9kPjwimvbCYjYncmIz6wJJfYC+EfFO3aiOemCv9Yw+g4h4XdKFpL7+ppC6TloB2K1u0jslTSMlyOLyzsnl/FvS86RnA24O/Db34UlOah2Z6SkNEfFxJ/OYzVbcFGnWNZ9leh+CRR11iLkM6TE7M86QHtFyIOkpCCsBb5A6Bq5/plvtuWublliemLUe6GtPUfgS6VltjZ7SYDZbc2Iz65rdaNzT+V007oG9D6mZslHT4onAeRFxXS7zdNLDRg+pXVfrQLEH/1VInRo/RUqMByg9TghJ/cqsVAdPaTCb7bkp0qxFkr5Hai58QdMfVjqA1ET4XeBRZu6B/UrgaeDaurK+QHpC8uHF4RHxlqRTgJ8D3+4gnPOA30p6DPgI2Dci3s9Nm6uQnhDwIfA7pj9WqZFGT2kwm6O4r0izFuUbP8bW99rfbLiZ9Qw3RZqZWaW4xmbWonzdKvKdj50ON7Oe4cRmZmaV4qZIMzOrFCc2MzOrFCc2MzOrFCc2MzOrlP8P6MVGv320TA8AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "