diff --git a/tasks_pandas_1-8.ipynb b/tasks_pandas_1-8.ipynb
new file mode 100644
index 0000000..8b2ac81
--- /dev/null
+++ b/tasks_pandas_1-8.ipynb
@@ -0,0 +1,3610 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 184,
+ "id": "7da1116b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1e452cec",
+ "metadata": {},
+ "source": [
+ "# 1. Загружаем данные из файла works"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 185,
+ "id": "ada21dce",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " salary \n",
+ " educationType \n",
+ " jobTitle \n",
+ " qualification \n",
+ " gender \n",
+ " dateModify \n",
+ " skills \n",
+ " otherInfo \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 60000 \n",
+ " Высшее \n",
+ " Специалист пресс-службы \n",
+ " Магистр \n",
+ " Мужской \n",
+ " 2021-04-01 \n",
+ " <p>Аналитическое мышление, <span cla... \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 85000 \n",
+ " Высшее \n",
+ " менеджер проектов \n",
+ " NaN \n",
+ " Мужской \n",
+ " 2021-04-01 \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 15000 \n",
+ " Среднее профессиональное \n",
+ " .... \n",
+ " NaN \n",
+ " Женский \n",
+ " 2021-06-01 \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 30000 \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " Женский \n",
+ " 2021-04-03 \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 45000 \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " Мужской \n",
+ " 2021-06-28 \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 32678 \n",
+ " 15000 \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " Женский \n",
+ " 2021-06-23 \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 32679 \n",
+ " 13000 \n",
+ " Среднее \n",
+ " уборщица \n",
+ " NaN \n",
+ " Женский \n",
+ " 2021-07-29 \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 32680 \n",
+ " 16000 \n",
+ " Среднее профессиональное \n",
+ " кочегар машинист котельной \n",
+ " NaN \n",
+ " Мужской \n",
+ " 2021-11-11 \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 32681 \n",
+ " 35000 \n",
+ " Высшее \n",
+ " NaN \n",
+ " NaN \n",
+ " Мужской \n",
+ " 2020-04-21 \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 32682 \n",
+ " 30000 \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " Мужской \n",
+ " 2021-06-20 \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
32683 rows × 8 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " salary educationType jobTitle \\\n",
+ "0 60000 Высшее Специалист пресс-службы \n",
+ "1 85000 Высшее менеджер проектов \n",
+ "2 15000 Среднее профессиональное .... \n",
+ "3 30000 NaN NaN \n",
+ "4 45000 NaN NaN \n",
+ "... ... ... ... \n",
+ "32678 15000 NaN NaN \n",
+ "32679 13000 Среднее уборщица \n",
+ "32680 16000 Среднее профессиональное кочегар машинист котельной \n",
+ "32681 35000 Высшее NaN \n",
+ "32682 30000 NaN NaN \n",
+ "\n",
+ " qualification gender dateModify \\\n",
+ "0 Магистр Мужской 2021-04-01 \n",
+ "1 NaN Мужской 2021-04-01 \n",
+ "2 NaN Женский 2021-06-01 \n",
+ "3 NaN Женский 2021-04-03 \n",
+ "4 NaN Мужской 2021-06-28 \n",
+ "... ... ... ... \n",
+ "32678 NaN Женский 2021-06-23 \n",
+ "32679 NaN Женский 2021-07-29 \n",
+ "32680 NaN Мужской 2021-11-11 \n",
+ "32681 NaN Мужской 2020-04-21 \n",
+ "32682 NaN Мужской 2021-06-20 \n",
+ "\n",
+ " skills otherInfo \n",
+ "0 Аналитическое мышление, \n",
+ "RangeIndex: 32683 entries, 0 to 32682\n",
+ "Data columns (total 8 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 salary 32683 non-null int64 \n",
+ " 1 educationType 24750 non-null object\n",
+ " 2 jobTitle 20259 non-null object\n",
+ " 3 qualification 12176 non-null object\n",
+ " 4 gender 31296 non-null object\n",
+ " 5 dateModify 32682 non-null object\n",
+ " 6 skills 8972 non-null object\n",
+ " 7 otherInfo 2316 non-null object\n",
+ "dtypes: int64(1), object(7)\n",
+ "memory usage: 2.0+ MB\n"
+ ]
+ }
+ ],
+ "source": [
+ "data.info()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 191,
+ "id": "9b63dae4",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "8972"
+ ]
+ },
+ "execution_count": 191,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data['skills'].notnull().sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 192,
+ "id": "815e62ec",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "8972"
+ ]
+ },
+ "execution_count": 192,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data['skills'].notnull().values.sum()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "79e1a2b9",
+ "metadata": {},
+ "source": [
+ "# 4. Получить все заполненные скиллы"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6ba377d3",
+ "metadata": {},
+ "source": [
+ "Получим все заполненные скилы с помощью фильтрации по столбцу"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 193,
+ "id": "52a9828b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 Аналитическое мышление, Коммуникабельность
\n",
+ "13 Ответственность в работе
\n",
+ "21 Усидчивость, умение удерживать в памяти нуж...\n",
+ " ... \n",
+ "32665
Отвественность
Исполнительность
Высокая работоспособность, нацеленность на ...\n",
+ "32672 исполнительный
\n",
+ "32674 Нацелен на результат. Считаю себя командным...\n",
+ "32675
трудоспособен
\n",
+ "Name: skills, Length: 8972, dtype: object"
+ ]
+ },
+ "execution_count": 193,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data[data['skills'].notna()]['skills']"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f21915af",
+ "metadata": {},
+ "source": [
+ "# 5. Вывести зарплату только у тех, у которых в скиллах есть Python (Питон)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ee181301",
+ "metadata": {},
+ "source": [
+ "Получим все строки в которых присутствутет слово python или питон. Для этого при получении троки переведем все \n",
+ "символы в нижний регистр"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 194,
+ "id": "39d8095e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df = data.skills.dropna().str.lower().str.contains('python|питон')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 195,
+ "id": "a30b9f50",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "230 35000\n",
+ "334 20000\n",
+ "2394 35000\n",
+ "8096 15000\n",
+ "9014 25000\n",
+ "9667 90000\n",
+ "20930 30000\n",
+ "22530 50000\n",
+ "28286 23000\n",
+ "30430 23000\n",
+ "Name: salary, dtype: int64"
+ ]
+ },
+ "execution_count": 195,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data[data.skills.notna()][df]['salary']"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "454adfab",
+ "metadata": {},
+ "source": [
+ "# 6. Построить перцентили по заработной плате у мужчин и женщин"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f88b7a85",
+ "metadata": {},
+ "source": [
+ "Для вычисления перцентилей получим одномерный массив распределения от 0,1 до 1. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 196,
+ "id": "b180df5b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ])"
+ ]
+ },
+ "execution_count": 196,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "percent_linspace = np.linspace(.1, 1, 10)\n",
+ "percent_linspace"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 197,
+ "id": "e510cefd",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " salary \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0.1 \n",
+ " 15000.0 \n",
+ " \n",
+ " \n",
+ " 0.2 \n",
+ " 20000.0 \n",
+ " \n",
+ " \n",
+ " 0.3 \n",
+ " 25000.0 \n",
+ " \n",
+ " \n",
+ " 0.4 \n",
+ " 30000.0 \n",
+ " \n",
+ " \n",
+ " 0.5 \n",
+ " 30000.0 \n",
+ " \n",
+ " \n",
+ " 0.6 \n",
+ " 35000.0 \n",
+ " \n",
+ " \n",
+ " 0.7 \n",
+ " 40000.0 \n",
+ " \n",
+ " \n",
+ " 0.8 \n",
+ " 50000.0 \n",
+ " \n",
+ " \n",
+ " 0.9 \n",
+ " 60000.0 \n",
+ " \n",
+ " \n",
+ " 1.0 \n",
+ " 1000000.0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " salary\n",
+ "0.1 15000.0\n",
+ "0.2 20000.0\n",
+ "0.3 25000.0\n",
+ "0.4 30000.0\n",
+ "0.5 30000.0\n",
+ "0.6 35000.0\n",
+ "0.7 40000.0\n",
+ "0.8 50000.0\n",
+ "0.9 60000.0\n",
+ "1.0 1000000.0"
+ ]
+ },
+ "execution_count": 197,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "male_salary = data.query('gender == \"Мужской\"').quantile(percent_linspace)\n",
+ "male_salary"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 198,
+ "id": "fdf8f4ae",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAFNCAYAAABIc7ibAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAy2ElEQVR4nO3de3hdZ3nn/e8tyfL5GCcmcQ42EAJJSEiwHaAwGFogYUrTdgqFAin0kDLDocy0fWGmLWWgB1rKtKUF0jRvGg6lKS0UAqQNfekroIVESoIbEmioieTESSCHLduRT7Kke/5YS862IlnbtraW9tb3c126vPZea6997/VI1k/P86y1IjORJEnS7OqougBJkqT5yBAmSZJUAUOYJElSBQxhkiRJFTCESZIkVcAQJlUoCl1V1yFJmn2GMGmWRcSLIuIfI+JeYA/wU1XXJEmafYYwzTsRsSoivhQRP4iI3RExEBEfiIjFs/Dezwf+BvgzYGNmLs/M65v9vpKkuSe8WKvmm4hYAlwM3JKZhyLiZIpg9I3M/PUmv3cP8JHM/Jtmvo8kae6zJ0zzTmbuy8x/ycxD408BY8AjABGxOiK+EBEPR8RguXz6+Osjoicifi8iesuetM9FxJq69X8bEd8v1301Is6re/stwEvL9Q9ExB9HxMK61/5iRGyPiFpE3BARp5XPfz4ihiJib0RkuTwUEVeV6wci4kfq9vMLZeAbf/wnEXFfROyJiNsi4gV165ZExKfK9xyKiOGIuG6yYxcRb4iI0br3H4qIsYjYepRtMiKeWq57Y0R8JyIei4h7IuKX6l63q9z+wITXv7aB4zqxzp7yc5xS99ynxmuJiM1lT2hX3fr/EhHbyuW3R8TN472j5f5+oVx+TkTcW/eZJh77w48j4t0R8Ym6dR+ecDyui4jfrlv/1IiY8i/jct/7y+Nyf0S8pcFtx49rT936p0fEP5XtfndEvKpu3XURcVW5/rGI+EpEnFW3/vBnKB//dv33TEScFhGfjuJnqD8i3la3buIx6Sr3tyEifrqu3tGy5qGIGGrkeNZtcyiO/HnpKtc9PyK2lZ/p8PduRHSXz7+13K4zIv41It411fGVZoIhTPNWRPxV+Z/7w8DDmflH5aoO4C+Bs4Azgf0Uw4f1rgB+DjgNGAE+WLfuH4CzgVOA24G/qlu3GDgPuAC4kCKU/UZZz4uB3wNeBZwK7ACuB8jMV2TmsvK1AKsyc1lmvqnBj9sHPAtYA3wS+NuIWFT3Wc6hGB5dBvzBNPv6Rvney8rtH5iwvgP4et36eg8BPwqsAN4I/FFEXFx+xlXl9m+a8B7jx+9ox3Uy3wN+FiAi1gJPG1+RmX3Ao8BL6rZ/HfDxcv0fA98APhkRh/+fjIinAJ8Cfjozt5dPj9HA/6URcTZw2XTbNWD8e+FngA9GxIrpti23PxzYImIp8E8U3wunAK8BPjwh2L4WeC+wFtjG9Md7fN8dwOeBfwPWAz8MvD0iXjbdazPzb+rq/Rrwlim+j452PDuA6yf8vIz7Q+DvgRX137uZOUzR/u+JiGcA7wQ6gd9p5DNLx6slQ1hEXBsRD0XEnQ1u/6qI+HZE3BURn2x2fWoNmflaYDnwDOAZEfE/yucfzcxPlz1mj1H8R/zCCS//eGbemZl7gd8EXhURneXrr83MxzLzIPBu4MKIWFn32vdk5kOZ+TDwv4HXl8+/Frg2M28vX/s/gedGxIYZ+KyfKD/XSGZ+AFhIEbwAovzqPNH3KXUDw1PU8cXM/F4WvgJ8CXjBZNtO8trpjutEH+PxY3sFZcCq81GKX7xE0ZP5MopQMu5XgJXAeDg/iSIIviczv1G33b3Aj0RETPMRfo8i1MyULooTOyY91tP4UWAgM/+y/J64Hfg0R54k8sXM/Gp5vH+d4nvxjAb2vRk4OTPfk5nDmXkP8BfAq4+jzqOZ6nhO+f3H49/nT2irzLwT+G2KkParwOszc3RmSpUm15IhDLgOuLSRDcu/lv4n8EOZeR7w9uaVpVZThoF/B95H8Yt6fHjuzyNiR0TsAb4KrBoPWaX76pZ3AAuAteUwxvsi4nvlawfKbdaW/w6X29e/9rRy+bT6dZk5RNFbs77Bj/PZKIb0dnFkzxwR8StRDAPuLtevrKvpoxQ9ZQ9HxG6KX0AnYg0wONmKiLgsimG+WlnHy+vqmFIDx3UyDwPfjWLo9fUUoazeJ4BXRMQyit7Hr2Xmg3XrTwbOpQjgl1AEv0GO7D0DeEf5OcaP7ZmT1H8J8HSKYz3Rr9a12+1H+TzjPlsegy8Bv5uZBxp4zURnAZeMv2/53q8FnlS3zeHv8fJ7scbj36vT7fu0Cfv+X8C6um1eVbfukWMtfprjOeX3H0Vv4I8BB8r3nvh5PgpsAG7MzP841rqkY9WSISwzv0rxH8JhEfGUKE77vy0ivhYRTy9X/SLwocwcLF/70CyXq9bQSTGsBEUPyDnAJZm5AvhP5fP1fz3X9wicCRyi+GXyM8DlwI9QBJ0NE157L8UvqfrXjg/nPVC/rhwyOgm4v8HP8OPlkN4qoH4OzgsogsKrgNXl+t3jNWXmPuALwJ3l+/1hg+83lacB3534ZBRz3z5d7n9dWceNTNIrMYnpjutUrgH+FNhe9jwelpn3Uww5/gRFSJvYU/Z/KHpwXkIRhj9J8b1wYURcWrefWzLz/MxcUX6meyep4w+Ad07Rs/KHde128TSfB4p2XkHxvfPLEfHcBl4z0X3AV8bfd3woODP/a902h7/Hy6C6hicOPU+17/4J+16emS+v2+ZTdZ952hA+iaMdz0m//+DwMPQO4NfL9574eT5M8bPwsijOZJaaqiVD2BSuBt6amc+m+Ev+w+XzTwOeVk6yvLn+P0/NTxFxbkT8WkScVD5+BkVIGR+KWk4xD2xXOUz1W5Ps5nXlfpYA7wH+rvyFsBw4SPFLewnwuxNe99fAb0TEyeU8pXdR9MhQvv8bI+JZZWD5XYozOAdO8CMvp5i39jDQVU42PjyPqBzS+yDwi5k5ciJvFBE/BPw48LlJVndTDIM+DIxExGXASxvc9XTHdSpfouhd+qMp1n8M+H+AZ1IMQwEQES+hGFb7nTK8baeYp3aQYs7ah6LxS5q8mKLT9QsNbt+o8QBy8nG89gsU/y++PiIWlF+by5+FcS8vJ7J3Uwz73ZKZ902+uyP0Ansi4h0RsbjsxTw/IjYfR52TmfR4RuFyYBPFsPETRHHywZlM8v0QEa8Hng28geKPmI+W4VNqmrYIYeUPyvMoJhtvA/6cYmIzFPMmzga2Ukw+vSYiVs1+lZpDdlF8P2wrh3X+lqK3dLwH6I8pJtA/AtwM/OMk+/g4xbD494FFPN7z9DGKv7TvB75dvr7e71KEgm+VX7dTzEMhM79MMb/s08CDwFOYmXk0N1H8UvpuWdsBjhxOfT/wmczsPZE3iYhzKYZzfjUzb5m4vpxf9zaKie2DFL1bNzS4++mO66Qycywzfy4zvz7FJn9P0fv49+X8PqI4YeHDwH+bbKgvM3soJo1PFs4ncypF0Jspn4/ihJI7gM8AXzzWHZRt8VKK768HKL6Pf58iJI/7JMVnrFGEk9dO2M3XImJnROykaNdXRsT/KP8YeQXFiSD9FD9H11D0YM6EqY7npRQ/S6+dLCxGxGqK8PWEPzYi4kyKn/srMnMoMz8J3MrU4V2aES17nbBysvIXMvP8KM4OujszT51ku6uAmzPzuvLxlym6sftms161jyhO8/9EZl5TdS06cRHxPeCXMvP/q7qWuSKKy03szMzfOIbXvAHYkJnvblJZUttpi56wzNwD9EfEK+Fwt/SF5erPAi8qnx8/Tf2eKuqUNLdExH+huE7cP1ddSxt4AP9vlY5JS944OCL+mmI4aW3ZFf5bFF3lH4mI36A4U+16iuvU3ERxccxvU8yh+LXMfLSSwiXNGWWP5rkUlyIYm2ZzTSMzv1R1DVKradnhSEmSpFbWFsORkiRJrcYQJkmSVIGWmxO2du3a3LBhQ9VltLy9e/eydOnSqsvQCbANW5vt1/psw9Y3G2142223PZKZk17Pr+VC2IYNG7j11lurLqPl9fT0sHXr1qrL0AmwDVub7df6bMPWNxttGBE7plrncKQkSVIFDGGSJEkVMIRJkiRVwBAmSZJUAUOYJElSBQxhkiRJFTCESZIkVaBpISwiro2IhyLizinWR0R8MCK2R8QdEXFxs2qRJEmaa5rZE3YdcOlR1l8GnF1+XQl8pIm1SJIkzSlNC2GZ+VWgdpRNLgc+loWbgVURcWqz6pEkSRr3d7ft5J5do5XWUOVti9YD99U93lk+9+DEDSPiSoreMtatW0dPT89s1NfWhoaGPI4tzjZsbbZf67MNW9fIWPK/vryP556SPLnCNqwyhMUkz+VkG2bm1cDVAJs2bUrv1XXivOdZ67MNW5vt1/psw9a17b5dDH/pXzlv3aJK27DKsyN3AmfUPT4deKCiWiRJ0jzR2/8oAE9bXe1FIqp89xuAK8qzJJ8D7M7MJwxFSpIkzaTe/kE2nLSEVQurDWFNG46MiL8GtgJrI2In8FvAAoDMvAq4EXg5sB3YB7yxWbVIkiQBjI0lt+6o8dJz1wGDldbStBCWma+ZZn0Cb27W+0uSJE20/eEhdu07xOYNa2Co2hDmFfMlSdK80dtfXD1ry8Y1FVdiCJMkSfNIb3+NU5Yv5Mw1S6ouxRAmSZLmh8ykb6DG5o1riJjsSlmzyxAmSZLmhZ2D+3lw9wEumQNDkWAIkyRJ80TfQDEfbPMGQ5gkSdKs6RuosWJRF+esW151KYAhTJIkzRO9/TU2bVhDR0f188HAECZJkuaBR4YO8r2H986ZoUgwhEmSpHng1oG5c32wcYYwSZLU9nr7B1m0oINnrl9ZdSmHGcIkSVLb6xuo8awzVtHdNXeiz9ypRJIkqQmGDo5w1wO72TKH5oOBIUySJLW523YMMpaweQ7NBwNDmCRJanN9/TU6O4KLz1xddSlHMIRJkqS21jtQ4/zTVrB0YVfVpRzBECZJktrWwZFRtt23a05dH2ycIUySJLWtb+3czfDI2JybDwaGMEmS1MZu6Z9bN+2uZwiTJEltq2+gxlNPWcaapd1Vl/IEhjBJktSWRseS2wYG59StiuoZwiRJUlv69+/v4bGDI3PuIq3jDGGSJKkt9Y3PB7MnTJIkafb0DtRYv2ox61ctrrqUSRnCJElS28lMevsH2bxhbl0lv54hTJIktZ2BR/fxyNBBtmw8qepSpmQIkyRJbWd8PtiWjfaESZIkzZregRprlnbzlJOXVV3KlAxhkiSp7fQN1Nh01moioupSpmQIkyRJbeUHew6w49F9c/YireMMYZIkqa30zuH7RdYzhEmSpLbSN1BjSXcn5522oupSjsoQJkmS2kpvf41nn7Wars65HXPmdnWSJEnHYPe+Q9z9g8fm/FAkGMIkSVIbuXVHjcy5Px8MDGGSJKmN9A7UWNAZXHTmqqpLmZYhTJIktY2+/hoXnL6KRQs6qy5lWoYwSZLUFg4cGuVb9+9uiaFIMIRJkqQ28c17d3FoNOf0/SLrGcIkSVJb6O2vEQHPPsueMEmSpFnTN1DjnHXLWbl4QdWlNMQQJkmSWt7I6Bi33zvIJXP8fpH1mhrCIuLSiLg7IrZHxDsnWb8yIj4fEf8WEXdFxBubWY8kSWpPdz2wh33Do2w2hEFEdAIfAi4DzgVeExHnTtjszcC3M/NCYCvwgYjoblZNkiSpPfUNFDft3tIiZ0ZCc3vCtgDbM/OezBwGrgcun7BNAssjIoBlQA0YaWJNkiSpDd3SX+Osk5ZwyopFVZfSsGaGsPXAfXWPd5bP1fsz4BnAA8C3gF/OzLEm1iRJktrM2Fhy60CtZa4PNq6rifuOSZ7LCY9fBmwDXgw8BfiniPhaZu45YkcRVwJXAqxbt46enp4ZL3a+GRoa8ji2ONuwtdl+rc82nDvuHxpjcN8hVhx86JjapOo2bGYI2wmcUff4dIoer3pvBN6XmQlsj4h+4OlAb/1GmXk1cDXApk2bcuvWrc2qed7o6enB49jabMPWZvu1Pttw7virW3YAd3LFpc9jw9qlDb+u6jZs5nBkH3B2RGwsJ9u/Grhhwjb3Aj8MEBHrgHOAe5pYkyRJajN9/TVOXr6Qs05aUnUpx6RpPWGZORIRbwFuAjqBazPzroh4U7n+KuC9wHUR8S2K4ct3ZOYjzapJkiS1n76BQbZsWENxnl/raOZwJJl5I3DjhOeuqlt+AHhpM2uQJEnta+fgPu7ftZ9ffMHGqks5Zl4xX5Iktazx64O10kVaxxnCJElSy+rtH2T5oi6e/qQVVZdyzAxhkiSpZfUN1Nh01mo6O1prPhgYwiRJUot6dOgg2x8aasmhSDCESZKkFtU3MAi01v0i6xnCJElSS+obqNHd1cEzT19ZdSnHxRAmSZJaUt9AjYvOWMXCrs6qSzkuhjBJktRy9h4c4a4H9rClReeDgSFMkiS1oNvvHWR0LNncovPBwBAmSZJaUG9/jY6Ai89aXXUpx80QJkmSWk5vf43zTlvJsoVNvQNjUxnCJElSSzk4Msq2+3a19HwwMIRJkqQWc+f9uzk4MtbS88HAECZJklpMb39xkdbNG1p3PhgYwiRJUovp7X+Up5y8lJOWLay6lBNiCJMkSS1jdCy5dcdgy88HA0OYJElqIXd//zEeOzDS8vPBwBAmSZJaSN9ADcCeMEmSpNnUO1DjtJWLOH31kqpLOWGGMEmS1BIyk77+GpvboBcMDGGSJKlF7Hh0Hw89drAt5oOBIUySJLWI3jaaDwYw7Q2XIuKKyZ7PzI/NfDmSJEmT6+uvsXrJAp568rKqS5kRjdz1cnP576uAT5XLCRjCJEnSrOkbqLFpwxo6OqLqUmbEtCEsM98KEBHPH1+WJEmaTQ/tOcDAo/t47SVnVV3KjDmWOWHZtCokSZKOYnw+WLucGQmNzQn7U4oAdnpEfHD8+cx8WzMLkyRJGtfXX2Pxgk7OO21F1aXMmEbmhN1a/ntbMwuRJEmaSu/AIM8+azULOtvnwg6NzAn76GwUIkmSNJnd+w/x79/fw9t/+GlVlzKjGhmOvGOy5zPzgpkvR5Ik6Ui37xgkEzZvXF11KTOqkeHIO4DzgHeVy5IkSbPmlv4aCzqDi86YZyEsM18XEecDvw08BrwrM/ubXpkkSRLF9cHOX7+Sxd2dVZcyo6ad3RYRa4AHgJ+juFjr30bEnzW7MEmSpAOHRrlj5y62tMn9Ius1Mhx5G49fI2z8ErUvb045kiRJj9t23y4OjWbb3C+yXiPDkRtnoxBJkqSJ+vprRMCms+ZhCIuIn5zs+cz8zMyXI0mS9LjegRrnrFvOyiULqi5lxjUyHPmKCcufpxieNIRJkqSmGRkd4/Ydg/zkxadXXUpTNDIc+cbx5Yj4Zv1jSZKkZvn2g3vYOzzaVveLrNfwtf8j4qk01nMmSZJ0wnr7i5t2t+OZkdDYnLDHKIYfa8Dbm12QJEkSFNcHO3PNEp60clHVpTRFI8ORy2ejEEmSpHGZSd/AIC8655SqS2maRi7W+twJj9dExF80svOIuDQi7o6I7RHxzim22RoR2yLiroj4SmNlS5Kkdva9h4eo7R1mS5vdL7JeI3PCfj8iXgMQEb8A9ABfnu5FEdEJfAi4DDgXeE1EnDthm1XAh4Efy8zzgFceS/GSJKk99fYPArC5TeeDQWMh7KXAT0TEd4BnAj+Umdc38LotwPbMvCczh4HrgcsnbPMzwGcy816AzHyo8dIlSVK76huosXbZQjauXVp1KU3TSAg7F/gDYAA4GTg7Ii5u4HXrgfvqHu8sn6v3NGB1RPRExG0RcUUD+5UkSW2ut7/Glo2riYjpN25RjVxy4gMUZ0eeDLwIOLV8/OJpXjfZUcsJj7uAZwM/DCwGvhERN2fmd4/YUcSVwJUA69ato6enp4GydTRDQ0MexxZnG7Y226/12YbN8+j+Me7ftZ+tTxpt6jGuug0bOTvyRRHxTOALwKsz87MN7nsncEbd49OBBybZ5pHM3AvsjYivAhcCR4SwzLwauBpg06ZNuXXr1gZL0FR6enrwOLY227C12X6tzzZsns9+835gG695yRbOX7+yae9TdRs2cnbkZcA1wO8A7yl7pRrRRzF0uTEiuoFXAzdM2OZzwAsioisilgCXAN9puHpJktR2egdqLF/YxTNOXVF1KU3VyJyw/w68rOyNeh5wTkT863QvyswR4C3ATRTB6lOZeVdEvCki3lRu8x3gH4E7gF7gmsy88/g+iiRJagd9/TUuPms1nR3tOx8MGpsTdllmjgJk5hDwKxFxfiM7z8wbgRsnPHfVhMfvB97fWLmSJKmdDe4d5j8eGuLHL5p4Ll/7aaQn7JaIeHNEHL5amr1VkiSpGfoGyvtFtulNu+s1EsJeDZwG9EXE9RHxsmjn80UlSVJlevtrdHd1cMHpzZuQP1dMG8Iyc3tm/jrFNb0+CVwL3BsR/zsi2j+mSpKkWdM3UONZp69iYVdn1aU0XSM9YUTEBRTXC3s/8Gngp4A9wD83rzRJkjSf7D04wp0P7GFzG98vst60E/Mj4jZgF/D/Au/MzIPlqlsi4oeaWJskSZpHvnnvLkbHki0bT6q6lFnRyNmRr8zMeyZbkZk/OcP1SJKkeap3oEZHwMVnrqq6lFnRSAh73WTz8DPzPTNfjiRJmq96+x/l3NNWsHzRgqpLmRWNzAl7J3ApMAzsrfuSJEmaEcMjY3zz3l1s3jB/zvlrpCfsNOC1wCuAfweuzcw7mlqVJEmaV751/24OjoyxZR6FsEYuUbErMz8EvAZYTHEfSUmSpBkzfpHWzfPgIq3jGjk78qXAFcBCiuuEvbnZRUmSpPmlr7/Gk09eytplC6suZdY0MifsH4GnA4uANwKfiYgbmlqVJEmaN8bGkr6B2rwaioTG5oS9qOlVSJKkeevuHzzGngMj82pSPjQQwjLzK7NRiCRJmp/m00276zV02yJJkqRm6e2vcerKRZy+enHVpcwqQ5gkSapMZjEfbPOGNUx2cfh2ZgiTJEmVua+2nx/sOTivLk0xrpFLVJwN/B5wLsUZkgBk5pObWJckSZoHbul/FGDenRkJjfWE/SXwEWCE4kzJjwEfb2ZRkiRpfugbqLFy8QLOPmVZ1aXMukZC2OLM/DIQmbkjM98NvLi5ZUmSpPmgb2CQzRtW09Exv+aDQWMh7EBEdAD/ERFviYifAE5pcl2SJKnNPfTYAfof2TvvLk0xrpEQ9nZgCfA24NnA64CfbWJNkiRpHrh1YBBg3l2kdVwjV8xfl5l9wBDFbYskSZJOWG9/jcULOjl//cqqS6lEIz1h72l6FZIkad7p7a9x0ZmrWNA5P6+Y1UhP2JKIuAg4YsZcZt7enJIkSVK723PgEN/5/h7e9uKzqy6lMo2EsPXABzgyhCWeISlJko7TbTsGyYRL5umkfGgshG3PTAOXJEmaMX39Nbo6govOXF11KZVpZBB2sOlVSJKkeaW3v8b561eyuLuz6lIqM20IsxdMkiTNpAOHRrlj5+55e32wcd47UpIkzap/u28Xw6Nj8/b6YOO8d6QkSZpVfQM1ADZvmL/zwcB7R0qSpFnWOzDIOeuWs2pJd9WlVKqRsyOPuHckcD/eO1KSJB2HkdExbt8xyI9fdFrVpVTueO4d+Xq8d6QkSToO33nwMYYOjsz7+WDQQE9Yed9I8N6RkiTpBPWW88Hm+5mR0NjZkXdM9nxmXjDz5UiSpHbW11/j9NWLOXXl4qpLqVwjc8I6gZc3uxBJktTeMpO+gRovPOfkqkuZExoJYSPALuBgZh5objmSJKld3fPIXh7dO8wW54MBjU3MXwncAdwXEY9ExOcj4ilNrkuSJLWZ3v7y+mDOBwMam5i/YXw5IhYCrwSuA17QtKokSVLb6euvsXZZN09eu7TqUuaERoYjD8vMg8AnImKoSfVIkqQ21TtQY9NZa4iIqkuZExo5O/KK4915RFwK/AnF5P5rMvN9U2y3GbgZ+OnM/LvjfT9JkjQ3Pbh7PzsH9/NzP7Sx6lLmjEZ6wv4QuB6oj61JcQ/JKUVEJ/Ah4CXATqAvIm7IzG9Pst3vAzcdQ92SJKmFjM8H8/pgj2skhN2fmW87jn1vAbZn5j0AEXE9cDnw7QnbvRX4NLD5ON5DkiS1gN7+GssWdvGMU1dUXcqc0cjZkXmc+14P3Ff3eGf53GERsR74CeCq43wPSZLUAvoGalx81mo6O5wPNq6RnrDTI+KDE59soHdssqM8MdD9MfCOzBw92iS9iLgSuBJg3bp19PT0TPPWms7Q0JDHscXZhq3N9mt9tmHjhoaT7/5gH+evODinjlnVbdhICPu149z3TuCMusenAw9M2GYTcH0ZwNYCL4+Ikcz8bP1GmXk1cDXApk2bcuvWrcdZksb19PTgcWxttmFrs/1an23YuH/69g+AW3n1izfNqTlhVbdhI9cJ+2hEdANPp+jJujszhxvYdx9wdkRsBO4HXg38zIR9Hz5FIiKuA74wMYBJkqTW1jdQo7uzgwtOX1l1KXNKI5eoeDnw58D3KIYYN0bEL2XmPxztdZk5EhFvoTjrsRO4NjPviog3leudByZJ0jxwS3+NC89YyaIFnVWXMqc0Mhz5f4AXZeZ2gPKWRV8EjhrCADLzRuDGCc9NGr4y8w0N1CJJklrIvuER7rp/N1f+pydXXcqc08jZkQ+NB7DSPcBDTapHkiS1kW/eu4uRsfR+kZNopCfsroi4EfgUxZywV1JcePUnATLzM02sT5IktbDe/hoR8OyzVlddypzTSAhbBPwAeGH5+GFgDfAKilBmCJMkSZPqG6hx7qkrWLFoQdWlzDmNnB35xtkoRJIktZfhkTFuv3eQV28+s+pS5qRGzo5cBPw8cB5FrxgAmflzTaxLkiS1uDsf2M2BQ2Nz6tpgc0kjE/M/DjwJeBnwFYqLrj7WzKIkSVLr6ytv2r15gyFsMo2EsKdm5m8CezPzo8B/Bp7Z3LIkSVKr6xuosXHtUk5evrDqUuakRkLYofLfXRFxPrAS2NC0iiRJUssbG0v6BgbZYi/YlBo5O/LqiFgN/CZwA7CsXJYkSZrUfzw0xO79h7w+2FE0cnbkNeXiVwAvdytJkqbV2/8ogD1hRzHlcGRELIqId0bEmyKiMyJ+KyI+HxG/ERGN9KBJkqR5qndgkHUrFnLGmsVVlzJnHW1O2J8CpwAXUPSCnQK8H1hV/itJkvQEmUlff43NG9YQEVWXM2cdrUfr2Zl5cUR0UFwx/z9l5lhEfA24bXbKkyRJrWbn4H6+v+cAlzgf7KiO1hM2DJCZY8DO8l8yM2ejMEmS1Jp6x68PZgg7qqNeoiIiVpSLz6177gwev2yFJEnSEXr7a6xcvICnnbK86lLmtKOFsJ+luEE3mXmg7vmFwC81syhJktS6+gZqbDprNR0dzgc7minnhGXm3VM8v7155UiSpFb28GMHueeRvbxq8xlVlzLnNXLFfEmSpIbcOuD9IhtlCJMkSTOmd6DGogUdPHP9yqpLmfMMYZIkacb09te46IzVdHcZMabjEZIkSTPisQOH+M6De7w0RYMMYZIkaUbctmOQsfR+kY0yhEmSpBnRN1CjsyO46MxVVZfSEgxhkiRpRvT1D3L++pUsXXi0uyJqnCFMkiSdsAOHRtm2cxdbNqyuupSWYQiTJEkn7I6duxkeGfP6YMfAECZJkk5YnxdpPWaGMEmSdMJ6+2ucfcoyVi/trrqUlmEIkyRJJ2R0LLl9xyBbvD7YMTGESZKkE/KdB/fw2MERQ9gxMoRJkqQT0tvvfLDjYQiTJEknpG+gxvpVizlt1eKqS2kphjBJknTcMpO+gZpDkcfBECZJko5b/yN7eWRo2BB2HAxhkiTpuHl9sONnCJMkScftlv4aJy3t5iknL626lJZjCJMkScetb6DGpg2riYiqS2k5hjBJknRcvr/7APfV9jsUeZwMYZIk6bj0lvPBnJR/fAxhkiTpuPT111ja3cm5p66oupSWZAiTJEnHpbe/xsVnraar0zhxPJp61CLi0oi4OyK2R8Q7J1n/2oi4o/z6ekRc2Mx6JEnSzNi1b5i7f/AYW5wPdtyaFsIiohP4EHAZcC7wmog4d8Jm/cALM/MC4L3A1c2qR5IkzZxbBwYB2Ox8sOPWzJ6wLcD2zLwnM4eB64HL6zfIzK9n5mD58Gbg9CbWI0mSZkjfQI0FncGzzlhVdSktq5khbD1wX93jneVzU/l54B+aWI8kSZohvQM1Ljx9FYsWdFZdSsvqauK+J7tqW066YcSLKELY86dYfyVwJcC6devo6emZoRLnr6GhIY9ji7MNW5vt1/rmcxseHE3uuG8fl25Y0NLHoOo2bGYI2wmcUff4dOCBiRtFxAXANcBlmfnoZDvKzKsp54tt2rQpt27dOuPFzjc9PT14HFubbdjabL/WN5/b8OvbH2E0b+GnXvgstj79lKrLOW5Vt2EzhyP7gLMjYmNEdAOvBm6o3yAizgQ+A7w+M7/bxFokSdIM6R2oEQEXn7W66lJaWtN6wjJzJCLeAtwEdALXZuZdEfGmcv1VwLuAk4APl/ecGsnMTc2qSZIknbi+gRpPf9IKVi5eUHUpLa2Zw5Fk5o3AjROeu6pu+ReAX2hmDZIkaeYcGh3j9h27+OnNZ0y/sY7KS9xKkqSG3fXAHvYfGvWm3TPAECZJkhrW21+cQ7d5o/PBTpQhTJIkNay3f5ANJy3hlOWLqi6l5RnCJElSQ8bGklt31ByKnCGGMEmS1JDtDw+xa98h7xc5QwxhkiSpIb39NQAuMYTNCEOYJElqSG9/jVOWL+TMNUuqLqUtGMIkSdK0MpO+gRqbN66hvMC6TpAhTJIkTWvn4H4e3H2ALU7KnzGGMEmSNK2+gWI+mGdGzhxDmCRJmlbfQI0Vi7o450nLqy6lbRjCJEnStG7pr7Fpwxo6O5wPNlMMYZIk6ageGTrIPQ/vdShyhhnCJEnSUd1azgfb4v0iZ5QhTJIkHVVv/yALuzp45vpVVZfSVgxhkiTpqPoGalx05iq6u4wNM8mjKUmSpjR0cIS7Htjt9cGawBAmSZKmdNuOQcYSb9rdBIYwSZI0pb7+Gp0dwcVnOil/phnCJEnSlHoHapx32gqWLuyqupS2YwiTJEmTOjgyyrb7dnl9sCYxhEmSpEl9a+duhkfG2OJ8sKYwhEmSpEnd0u9Nu5vJECZJkibVN1DjqacsY83S7qpLaUuGMEmS9ASjY8ltA4P2gjWRIUySJD3Bv39/D48dHPF+kU1kCJMkSU/Q1z9+0+6TKq6kfRnCJEnSE/QO1Fi/ajHrVy2uupS2ZQiTJElHyEx6+wfZvMGhyGby8reSJLW5Q6Nj7BseZd/wCPuGR9k/PMregyPsOzTKvoPF8/sPjbL34Cj7h0eo7RvmkaGD3i+yyQxhkiTNAZnJgUNj7B0eYf/wKPuGRw8v7z1YhKR948vDo+wdLgLTvnLbfcMj5XOPh63xwDU8OtZwHRGwZEEnZ65ZwovOOaWJn1iGMEmSjsF4r9LggTHueXjocNipD0+HQ9DB8t9DdcsTQtK+8TB1aJTMxuvo7uxgcXcnSw5/dbGku5O1y7pZ0r3k8ecXdrFkQSeLuztZurDriG0Xd3eytLvriH0sWtBBRDTvAOowQ5gkqe1kJgdHxooht7rgM96DdGRP0eM9SONDdPW9T+M9T+NDd0f0KvV8ZdpaJoak8eBz0rKFLO3uZHH5/Pjy0oWdLF5Qbr+wkyULivC0eMJ+FnQ6rbvVGcIkSZUZGR07IvTsGx49IvjUD7ntnRCYJvYmHdH7dIy9Sgs6g8WThJ01S7s5Y/WSJwSgJd2d7Bz4Hs86/9zDoaroaepkyYIyPHV3sqirk44Oe5U0OUOYJM0jmcnoWHJoNDk0NsahkbFieXSs/DrO5ZExDo3VLY+OHZ7DNLEXan85dLdveJThkcbnKsHjvUr1wWdJdydrlnY/ISQdbcitPjAt7u6ku+vYe5V6Ru9l60Xrj/l10jhDmCQdp/FAMzKWDJfhY2QsGR6ZPKyMjI4V240m274/wu5t9x/eplg3+fKh0WL/9cvj73VodIzhKZYPjRT7GakPW2Njx9RDdKy6OztY0Bl0dXYcDkDjwWf10m7Wr64PSlMHpokhaelCe5XUfgxhUovIzLpfrsneQ8nufYeqLqtpRvPxUHFo9MhwMzKWZcAYY6QMK/XLh8oQMzLJ8sRgVB9untjTU/fcxJ6ecvmEAs22bUddvaAzWNDZUX5NvdzV2cHiBZ2sWNT1hG26OjvoHt++q4MFHY8vd3UE3V0dk+63qzPKQHX09y72WSx3doQTuqVjYAjTvDQx0BwaG5t6+RiHa+p7MSZuMzLeizFhebJ1T+jVGJ3kt/2XvzT7B69FHQ4ldcGjq3yuu255QRlolpeBZuK6+hDSXQagaYPKJKFl2zdv43nP2VIEmK4nbt9loJHaniFMJ+yIQDNd4KgbEhlfHhkb7+04cvm4hmiO0jMyMTA1U/d4j8N4L0P98hG/mINlC7sOL3eVv/Qn+yVe36PR1dnB97Zv56lPfWpTP0eVOgK6uzqP2iNz+Hh1BV0dky/P1UDz6PYOnnLysqrLkFQhQ9gcMx5opuslOWL+yTTzQ8bnotQPy/Tfe5Cbat868SGa2Qg09T0IEwLNEb0aHY8Hmq5ym+5Jws14z0X3FMsLyl/6XZMsTwxG3V1HvldXx+wNyfSM7GDr8zc2/X0kSc1hCJtg9/5D3HLPo0ef8DpybHNOjr78xJ6jZhofWokcZXHtB0XPyniQqA8VnR0sXdh1eLk+ZExcnhiMjmuIxjkmkqR5xhA2wc7BfVz58dsa2naynpVGA82CqZafMHQ1eVhpdNJsfQ9QfaDp6elh69atTTySkiTpaJoawiLiUuBPgE7gmsx834T1Ua5/ObAPeENm3t7Mmqbz5LXL+MJbn39MgUaSJOlYNS2ERUQn8CHgJcBOoC8ibsjMb9dtdhlwdvl1CfCR8t/KLO7u5Pz1K6ssQZIkzQPNvPHUFmB7Zt6TmcPA9cDlE7a5HPhYFm4GVkXEqU2sSZIkaU5o5nDkeuC+usc7eWIv12TbrAcerN8oIq4ErgRYt24dPT09M13rvDM0NORxbHG2YWuz/Vqfbdj6qm7DZoawySZMTbyWQSPbkJlXA1cDbNq0KZ1QfuKcmN/6bMPWZvu1Ptuw9VXdhs0cjtwJnFH3+HTggePYRpIkqe00M4T1AWdHxMaI6AZeDdwwYZsbgCui8Bxgd2Y+OHFHkiRJ7aZpw5GZORIRbwFuorhExbWZeVdEvKlcfxVwI8XlKbZTXKLijc2qR5IkaS5p6nXCMvNGiqBV/9xVdcsJvLmZNUiSJM1FzRyOlCRJ0hQMYZIkSRUwhEmSJFUgimlZrSMiHgZ2VF1HG1gLPFJ1ETohtmFrs/1an23Y+majDc/KzJMnW9FyIUwzIyJuzcxNVdeh42cbtjbbr/XZhq2v6jZ0OFKSJKkChjBJkqQKGMLmr6urLkAnzDZsbbZf67MNW1+lbeicMEmSpArYEyZJklQBQ1ibi4hLI+LuiNgeEe+cZP1rI+KO8uvrEXFhFXVqctO1X912myNiNCJ+ajbr0/QaacOI2BoR2yLiroj4ymzXqKNr4P/RlRHx+Yj4t7INvQ/yHBIR10bEQxFx5xTrIyI+WLbvHRFx8WzVZghrYxHRCXwIuAw4F3hNRJw7YbN+4IWZeQHwXpzjMGc02H7j2/0+cNPsVqjpNNKGEbEK+DDwY5l5HvDK2a5TU2vw5/DNwLcz80JgK/CBiOie1UJ1NNcBlx5l/WXA2eXXlcBHZqEmwBDW7rYA2zPznswcBq4HLq/fIDO/npmD5cObgdNnuUZNbdr2K70V+DTw0GwWp4Y00oY/A3wmM+8FyEzbcW5ppA0TWB4RASwDasDI7JapqWTmVynaZCqXAx/Lws3Aqog4dTZqM4S1t/XAfXWPd5bPTeXngX9oakU6FtO2X0SsB34CuGoW61LjGvkZfBqwOiJ6IuK2iLhi1qpTIxppwz8DngE8AHwL+OXMHJud8jQDjvV35Yzpmo03UWVikucmPR02Il5EEcKe39SKdCwaab8/Bt6RmaPFH+GaYxppwy7g2cAPA4uBb0TEzZn53WYXp4Y00oYvA7YBLwaeAvxTRHwtM/c0uTbNjIZ/V840Q1h72wmcUff4dIq/1I4QERcA1wCXZeajs1SbptdI+20Cri8D2Frg5RExkpmfnZUKNZ1G2nAn8Ehm7gX2RsRXgQsBQ9jc0EgbvhF4XxbXfNoeEf3A04He2SlRJ6ih35XN4HBke+sDzo6IjeUk0VcDN9RvEBFnAp8BXu9f3nPOtO2XmRszc0NmbgD+DvhvBrA5Zdo2BD4HvCAiuiJiCXAJ8J1ZrlNTa6QN76XoySQi1gHnAPfMapU6ETcAV5RnST4H2J2ZD87GG9sT1sYycyQi3kJx1lwncG1m3hURbyrXXwW8CzgJ+HDZmzLiDWnnhgbbT3NYI22Ymd+JiH8E7gDGgGsyc9JT6TX7Gvw5fC9wXUR8i2Jo6x2Z+UhlResIEfHXFGetro2IncBvAQvgcPvdCLwc2A7so+jZnJ3avGK+JEnS7HM4UpIkqQKGMEmSpAoYwiRJkipgCJMkSaqAIUySJKkCXqJC0pwREaMUt30Ztwa4ITPfUlFJktQ0hjBJc8n+zHzW+IOIeAPFXQEkqe04HCmpJUTEyRHx6YjoK79+qHz+3RHx8Yj454j4j4j4xfL5rRHxhbrX/2pEvLtc7oyI95f7uSMifulor4mIF0TEtoj4dkTsL5e3ldsMRMTacvkTEXFn3evfEBEPl9vXIuKnyueH6rb5Wv17Spo/7AmT1Cr+BPijzPyX8nZbNwHPKNddADwHWAp8MyK+OM2+fp7i1iSbI2Ih8K8R8aWpNs7MrwHPiogNwBfqe+vGRcQzgfMnPN0J/HVmvi0irpvkNf8ZWAnsnqZeSW3IECapVfwIcG55ey2AFRGxvFz+XGbuB/ZHxP8PbAF2HWVfLwUuGO+ZoghCZwPDFPdx3FY+fzLwFw3W99sUt0P5nbrnFgMHJts4ig/y68DvAq9r8D0ktRFDmKRW0QE8twxbh5WhbOL916a7H1sAb83Mmybsayvwtcz80fLxrwLLGqjtecAQ8G8Tnj8NeGCK17wG6AG+38D+JbUh54RJahVfAg6fJRkRz6pbd3lELIqIkyhu1Ns3zb5uAv5rRCwo9/W0iFh6ArW9G3hX/RMRsRj4UeBfJ9m+A/jvwB+cwHtKanH2hElqFW8DPhQRd1D83/VV4E3lul7gi8CZwHsz84GIeBrwvIj4l3Kb9UBnRHwOuAbYANxeDgs+DPz4CdR2S2Z+r5wzNu4fgL/JzMkC4WLg7zJzV93wqqR5JjKn67WXpLmrPONxKDP/sMFtezKzp8llSdK07AmTNJ/8M7Cj6iIkCewJkyRJqoQT8yVJkipgCJMkSaqAIUySJKkChjBJkqQKGMIkSZIqYAiTJEmqwP8FXBvdYPnP1BQAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10, 5)) \n",
+ "plt.title('Заработная плата мужчин в перцентилях') \n",
+ "plt.xlabel('Перцентили') \n",
+ "plt.ylabel('Зарплата мужчин') \n",
+ "plt.grid() \n",
+ "\n",
+ "plt.plot(male_salary) \n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 199,
+ "id": "7511ffff",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " salary \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0.1 \n",
+ " 15000.0 \n",
+ " \n",
+ " \n",
+ " 0.2 \n",
+ " 18000.0 \n",
+ " \n",
+ " \n",
+ " 0.3 \n",
+ " 20000.0 \n",
+ " \n",
+ " \n",
+ " 0.4 \n",
+ " 22000.0 \n",
+ " \n",
+ " \n",
+ " 0.5 \n",
+ " 25000.0 \n",
+ " \n",
+ " \n",
+ " 0.6 \n",
+ " 30000.0 \n",
+ " \n",
+ " \n",
+ " 0.7 \n",
+ " 30000.0 \n",
+ " \n",
+ " \n",
+ " 0.8 \n",
+ " 35000.0 \n",
+ " \n",
+ " \n",
+ " 0.9 \n",
+ " 47000.0 \n",
+ " \n",
+ " \n",
+ " 1.0 \n",
+ " 900000.0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " salary\n",
+ "0.1 15000.0\n",
+ "0.2 18000.0\n",
+ "0.3 20000.0\n",
+ "0.4 22000.0\n",
+ "0.5 25000.0\n",
+ "0.6 30000.0\n",
+ "0.7 30000.0\n",
+ "0.8 35000.0\n",
+ "0.9 47000.0\n",
+ "1.0 900000.0"
+ ]
+ },
+ "execution_count": 199,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "female_salary = data.query('gender == \"Женский\"').quantile(percent_linspace)\n",
+ "female_salary"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 200,
+ "id": "9ff4f3d9",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAncAAAFNCAYAAABiw0k0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA1I0lEQVR4nO3deZxkZXnw/d/V3bPvwzKBGZhBQcMissyMmEQzio+g0WB8NS9JDGhISPJo0OdJnqhZxFdDoonGaKJGogTUREX0icSdYNolotPNoghIGJmaYRiEgepZma27r/ePOj1T3fRS093V1VXz+34+/amq+9znnKvO3UNf3Ms5kZlIkiSpNbQ1OgBJkiRNHpM7SZKkFmJyJ0mS1EJM7iRJklqIyZ0kSVILMbmTWkxUdDQ6DklSY5jcSS0gIl4QEV+NiM3ATuBVjY5JktQYJnfSJIiIxRHx9Yh4NCJ2REQpIt4bEXOm4Ny/AHwG+AfglMxckJmfrvd5JUnTU3gTY2niImIucB7w/cw8GBHHUUm4bsvMP63zuTuBD2fmZ+p5HklSc7DnTpoEmflkZn4nMw8OFAH9wOMAEbEkIr4YEdsioqd4v2Jg/4jojIi/ioj1Rc/fFyJiadX2z0bET4tt34qIM6tOvxZ4cbF9a0T8XUTMqtr3dyJiQ0SUI+LmiDixKP/3iNgdEXsiIov3uyPiH4vtpYh4UdVxfrtIJAc+vz8iHoqInRFxe0Q8r2rb3Ii4sTjn7og4EBHXD3ftIuK1EdFXdf7dEdEfEetGqZMRcWqx7XURcV9E7IqIByPid6v2217U3zdk/9+o4bpWx9gWEZ+LiA9UlVXH8MaIuG2gpzYiTizqb4uIjRFxVdV+b4+IT1Z97iiOtar4fH1E/EXV9u9ExGurPh9ql+K6fKdq2x8Xx3pRLeca5nt2Ftdqd0Q8FhHXDFdvmLq7I2JvRJSqto91DW6KiM8U7XZHRDx7uO9YfB76u7coIj4WEY9ExMMR8RcR0T7cNSnKtkTEuoh4blW8B4vfy4HPJ491PauOP9Lv4ukR8V9R+Texu6j32mLblyPivVXH+UxEXDfS9ZUmwuROmkQR8S8RsRvYBmzLzPcVm9qAfwZWAicDe6kMo1a7DPgt4ESgF/hA1bavAKcBxwN3AP9StW0OcCZwNvBsKsnenxXxvBD4K+BXgROATcCnATLz5Zk5v9gXYHFmzs/M36vx63YB5wBLgX8FPhsRs6u+yzOpDBPPB/56jGPdVpx7flF/65DtbcB3q7ZXewx4GbAQeB3wvog4r/iOi4v6vzfkHAPXb7Trekhm9gOvAVZHxP+u3hYRvwL8T+Dlmbk3ItqAfwd+ACwHLgTeFBEXjXENJiQilgBXAdsneKg3FNfsF4A/jIizxqpb1H95VSy1XINLgM9y+Pfn3yJiRo0x3kDl38ipwLnAi4HfHmunzLytKt5/Af666ndic3XdUa7naL+LVwP3AUuLbbdVbfst4Dcj4oXF/1ysAd5Y29eVjozJnTSJMvM3gAXA6cDpA4lAZj6RmZ8revh2AdcAvzhk909k5o8ycw/w58CvDvRGZOZ1mbkrM/cDbweeHRGLqvZ9R2Y+lpnbgP8P+M2i/DeA6zLzjmLftwLPHann5gi/6yeL79Wbme8FZlFJ6ACi+Gmf6HkKM4EDI8Txpcz8SVZ8E/g68Lzh6g6z71jXtbruXuCXgbdGxP9TFD8H+Djwy5n5eFG2BjguM9+RmQcy80Hgn4BLa/qm4/enwHXAjkk6XgfQN87j1XINbs/Mm4re7r8FZgMXjHXgiFgGvAR4U2buyczHgPcx+dd3pOs54u8ih3/nn/K3NTN/SuV/Mm4A3g9cVvy3QJp0JnfSJCuSjB8D76LSgzUwTPmRiNgUETuBbwGLB5K3wkNV7zcBM4BjI6I9It4VET8p9i0VdY4tXg8U9av3PbF4f2L1tszcDTxBpTelFv8WlaHN7QzuSSQi/jAqw6E7iu2LqmK6gUrP3raI2AH8UY3nG8lSoGe4DRHxkoj4XlSGgLcDL62KY0Q1XNfhnEdlNfLfFZ//AXgQeGFVnZXAiQPXrYjpT4BlVXV+tWrb40xQRJxMpXf2b4bZfKTn+kBR9x4q/2Pw0Bj1h1PLNTh03KJndAuHf2/HOvYM4JGqY3+ESu/rgAuGnLuW4x4yxvUc8XeRynd8GvBkcd6hyeoXqSR/92fmd5DqxOROqp92KvPuAP6QSq/WczJzIfD8ojyq6p9U9f5k4CCVP8a/TmUI60VUEqhVQ/bdTOUPXvW+A8OaW6u3RcQ84Bjg4Rq/wyuKoc3FVIaoBo7zPODNVP4ALim27xiIKTOfpPKH7EfF+d5T4/lG8gzgv4cWRmVu4eeK4y8r4vgyg6/rSMa6rkPPNRv4IHAl8P8WxVdRuQZXR8TPFGUPARsHrlvxsyAzX1p1uBurruuYiWgN/oLKEONwPUFHeq6rirpLgV+IiF8bRzy1XINDv+/FMO4KnjocP9Kx9wPHVh17YWZWz5f8XvW5azxutdGu57C/iwCZ+RMqQ9EfKc77vSFVrqEybHvCOK+rVBOTO2kSRMQZEfF/IuKY4vPpVJKffy2qLKAyz257VBZKXD3MYV5THGcu8A7gpszsK/bdT6XHbS7wl0P2+xTwZxFxXEQcC7wNGJhE/6/A6yLinCIR+ksqK3pLE/zKC6jMedoGdETE26jMeQMqE96p9PT9Tmb2TuREEfHzwCuALwyzeSaV4eBtQG9EvITK/KtajHVdh/pzKknDrZn53aLstsy8H/hHDvfmrQd2RsSbI2JO0UN4VkSsqTGuI3UqleHhj0zycfuoLAw6bhz71nINzo+IV0blhttvotIWQ5Ohp8jMR6gMvb83IhZGZbHL0yNi6DSH8Rrxeo7xu0hEXFBsf+sw255PZU7oZcXP30dErT3o0hExuZMmx3ZgHXBXMcT3WeCDmTnQY/V3VBY+PE7lD9hXhznGJ4DrgZ9SmX800FP2cSpDqw8D9/LUP4B/SWUxwN3Fzx1Ueh7IzFupJCWfAx4Bns7kzE36GpXFCP9dxLaPwcPKfwN8PjPXT+QkEXEGlSHeP8rM7w/dXvSsXAXcSGWo7NeBm2s8/FjXdWgcVwD/e4QqfwWcExEXFwn5y6ksNtlIpc0/SqV3sFZXRWWF5xYq89f+turzCioJ/YBlwJ/l4ZXaE/UPxaKgEvBj4GNHeoAar8EXqPSA9lCZI/rKId/hU1Xf+a+pzBX922LbZVQS+3uL/W+ismBoMgx7Pcf6XSwWg/wT8MbM3Dlk20Iqv29vyMyHiyHZjwH/HBG19DJLR8T73EnTQFRu8/DJzPxoo2PR9BcR/5GZLxq75vQUEW8HTs3M1xzBPuuA12bma+sTldQ67LmTpOZzR6MDaIAeKos8JI3Bh4tLUpPJzD9udAxTLTN/QGWxgqQxOCwrSZLUQhyWlSRJaiEmd5IkSS3EOXeFY489NletWtXoMJrenj17mDdvXqPD0ATYhs3PNmxutl/zm4o2vP322x/PzGHvQ2lyV1i1ahXd3d2NDqPpdXZ2sm7dukaHoQmwDZufbdjcbL/mNxVtGBGbRtrmsKwkSVILMbmTJElqISZ3kiRJLcTkTpIkqYWY3EmSJLUQkztJkqQWYnInSZLUQkzuJEmSWojJnSRJUgsxuZMkSZok335gG7c/2tvQGEzuJEmSJsm133qQ//vAgYbGYHInSZI0CXr7+rljUw/PWNLe0DhM7iRJkibBj3+6iz0H+kzuJEmSWsH6jWUAnrG0semVyZ0kSdIk6CqVWb54Dktnm9xJkiQ1tcykq9TD2lOWNjoUkztJkqSJKj3xJI/v3s/qVUsaHYrJnSRJ0kR1lSrz7dausudOkiSp6XVtLLN47gyeftz8RodicidJkjRR3Zt6WL1yKW1t0ehQTO4kSZIm4rFd+9j4+B7WntL4+XZgcidJkjQh3aUeAFZPg/l2YHInSZI0IV2lMrNntHHWiYsaHQpgcidJkjQhXaUy55y0mJkd0yOtmh5RSJIkNaHd+3u5d+vOaXELlAEmd5IkSeN0x6Ye+hPWTIMnUwwwuZMkSRqnrlKZtoBzT54eK2XB5E6SJGncukplzjxxEfNndTQ6lENM7iRJksbhQG8/d27ePi2eJ1vN5E6SJGkcfrR1B/t7+6fVYgowuZMkSRqXro1lYPrcvHiAyZ0kSdI4dJV6OOXYeRy3YFajQxnE5E6SJOkI9fcn3ZvKrJlm8+3A5E6SJOmIbdi2m+1PHpx2Q7JgcidJknTEukqV+XbTbTEF1Dm5i4j/FRH3RMSPIuJTETE7IpZGxC0R8UDxuqSq/lsjYkNE3B8RF1WVnx8RdxfbPhARUZTPiojPFOXfj4hVVftcXpzjgYi4vJ7fU5IkHV26NpY5dv4sVh4zt9GhPEXdkruIWA5cBazOzLOAduBS4C3ArZl5GnBr8ZmIOKPYfiZwMfChiGgvDvdh4ErgtOLn4qL8CqAnM08F3ge8uzjWUuBq4DnAWuDq6iRSkiRpIrpKPaw9ZQlFf9O0Uu9h2Q5gTkR0AHOBrcAlwA3F9huAVxTvLwE+nZn7M3MjsAFYGxEnAAsz87bMTODjQ/YZONZNwIVFr95FwC2ZWc7MHuAWDieEkiRJ47Z1+14e3r6XNdNwSBYqyVddZObDEfEeYDOwF/h6Zn49IpZl5iNFnUci4vhil+XA96oOsaUoO1i8H1o+sM9DxbF6I2IHcEx1+TD7HBIRV1LpEWTZsmV0dnaO/wsLgN27d3sdm5xt2Pxsw+Zm+01/t23tBSAef5DOzk1P2d7oNqxbclcMg14CnAJsBz4bEa8ZbZdhynKU8vHuc7gg81rgWoDVq1fnunXrRglPtejs7MTr2Nxsw+ZnGzY322/6+49/u5v5s7bympe9gI72pw6CNroN6zks+yJgY2Zuy8yDwOeBnwMeLYZaKV4fK+pvAU6q2n8FlWHcLcX7oeWD9imGfhcB5VGOJUmSNCFdG3s49+TFwyZ200E9o9oMXBARc4t5cBcC9wE3AwOrVy8HvlC8vxm4tFgBewqVhRPriyHcXRFxQXGcy4bsM3CsVwHfKOblfQ14cUQsKXoQX1yUSZIkjduOJw9y/6O7puUtUAbUc87d9yPiJuAOoBe4k8oQ6Hzgxoi4gkoC+Oqi/j0RcSNwb1H/9ZnZVxzu94HrgTnAV4ofgI8Bn4iIDVR67C4tjlWOiHcCXUW9d2RmuV7fVZIkHR26N1XSiTWnHIXJHUBmXk3lliTV9lPpxRuu/jXANcOUdwNnDVO+jyI5HGbbdcB1RxiyJEnSiNaXysxoD845aXGjQxnR9BwsliRJmoa6Sz08a/kiZs9oH7tyg5jcSZIk1WDfwT5+uGX7tL2/3QCTO0mSpBr84KHtHOxLkztJkqRW0FWqLKY4f+X0fqKpyZ0kSVINuko9PGPZfJbMm9noUEZlcidJkjSGvv7kjk09035IFkzuJEmSxnTfIzvZtb/X5E6SJKkVdJem/82LB5jcSZIkjaGr1MOJi2azfPGcRocyJpM7SZKkUWQmXaVyU/TagcmdJEnSqDaXn+SxXfubYr4dmNxJkiSNav3GYr6dyZ0kSVLz6y71sGjODE47fn6jQ6mJyZ0kSdIoukplVq9cQltbNDqUmpjcSZIkjeDx3ft58PE9TbOYAkzuJEmSRnTo/narpvfzZKuZ3EmSJI2gq9TDrI42nrV8caNDqZnJnSRJ0gi6SmXOOWkxMzuaJ2VqnkglSZKm0J79vdyzdWfT3AJlgMmdJEnSMO7cvJ2+/myqxRRgcidJkjSs9aUybQHnnby40aEcEZM7SZKkYXSXypx+wkIWzJ7R6FCOiMmdJEnSEAf7+rlz8/amm28HJneSJElP8aOHd7D3YJ/JnSRJUivoLvUAzXXz4gEmd5IkSUOsL5VZecxcjl84u9GhHDGTO0mSpCqZSXep3JRDsmByJ0mSNMhPtu2m58mDrDW5kyRJan5dxXy71U043w5M7iRJkgbp2ljm2PkzOeXYeY0OZVxM7iRJkqqsL5VZvXIpEdHoUMbF5E6SJKnwyI69bOnZ23TPk61mcidJklToauL72w0wuZMkSSp0l8rMm9nOGScsbHQo42ZyJ0mSVFi/scx5K5fQ0d68KVLzRi5JkjSJduw9yP2P7mL1yuadbwcmd5IkSQDcsamHTFhzSvPOtwOTO0mSJKByC5SOtuDck0zuJEmSml53qcxZyxcxZ2Z7o0OZEJM7SZJ01Nt3sI8fPLSDtU18f7sBJneSJOmod/fDOzjQ18/qlc09JAsmd5IkSazfWAZg9Sp77iRJkppeV6nMqcfPZ+m8mY0OZcI6xqoQEScPV56Zmyc/HEmSpKnV15/cvqmHl519YqNDmRRjJnfAl4rXpwE/AQJI4Ox6BSVJkjRV7v/pLnbt623q58lWGzO5y8xnAUTEnZl5bv1DkiRJmjrdmyrz7da0wHw7OLI5d3mkB4+IxRFxU0T8OCLui4jnRsTSiLglIh4oXpdU1X9rRGyIiPsj4qKq8vMj4u5i2wciIoryWRHxmaL8+xGxqmqfy4tzPBARlx9p7JIk6eiwfmOZExbNZsWSOY0OZVKMmdxFxCsj4pXA4oH3xedavB/4amb+LPBs4D7gLcCtmXkacGvxmYg4A7gUOBO4GPhQRAzcRfDDwJXAacXPxUX5FUBPZp4KvA94d3GspcDVwHOAtcDV1UmkJEkSQGbSVSqzetVSir6jpldLz93Li59vVr1/2Vg7RcRC4PnAxwAy80BmbgcuAW4oqt0AvKJ4fwnw6czcn5kbgQ3A2og4AViYmbdlZgIfH7LPwLFuAi4sevUuAm7JzHJm9gC3cDghlCRJAmBLz14e3bmftS0y3w5qm3P3unEe+2nANuCfI+LZwO3AG4FlmflIcexHIuL4ov5y4HtV+28pyg4W74eWD+zzUHGs3ojYARxTXT7MPpIkSUBr3d9uQC23QvnAcOWZeVUNxz4P+IPM/H5EvJ9iCHakUw13mlHKx7vP4RNGXElluJdly5bR2dk5Sniqxe7du72OTc42bH62YXOz/abWzT/az9wOeOTHt/Po/ZMzLNvoNqzlVigvA3ZSmfe27wiOvQXYkpnfLz7fRCW5ezQiTih67U4AHquqf1LV/iuArUX5imHKq/fZEhEdwCKgXJSvG7JP59AAM/Na4FqA1atX57p164ZW0RHq7OzE69jcbMPmZxs2N9tvar3z9k4uOHUpL3zBmkk7ZqPbsJY5d88A/gn4bWAG8InMvGH0XSAzfwo8FBHPLIouBO4FbgYGVq9eDnyheH8zcGmxAvYUKgsn1hdDuLsi4oJiPt1lQ/YZONargG8U8/K+Brw4IpYUCyleXJRJkiQB8MTu/fxk2x5Wt9B8O6htzl0v8MGIuA54E/DdiHhPZt5Uw/H/APiXiJgJPAi8jkpCeWNEXAFsBl5dnOeeiLiRSgLYC7w+M/uK4/w+cD0wB/hK8QOVxRqfiIgNVHrsLi2OVY6IdwJdRb13ZGa5hnglSdJRontTDwBrW2i+HdQ25+5uBs9xWwR8BmgfcadCZt4FrB5m04Uj1L8GuGaY8m7grGHK91Ekh8Nsuw64bqwYJUnS0alrY5mZHW08a8WiRocyqWqdcydJktRSujb1cM6KxczqGLO/qqnUMiy7aWhZRLw2Ik6mMsftO3WJTJIkqU6ePNDLPQ/v4MrnP63RoUy6WoZl/5PBtxEJ4BwqNxDeXJ+wJEmS6ueuzdvp7U/WnNJa8+2gtmHZPxryOYB/ysxv1SEeSZKkultfKhMB569srZWyUNuw7O1DyyJiV33CkSRJqr+uUpmf/ZmFLJw9o9GhTLpahmXfNrQIOLk+4UiSJNXXwb5+7ty8nVefv2Lsyk2olmHZPcOU9Q1TJkmSNO3du3UnTx7oa6nnyVarZVj2vUPLIuKS+oQjSZJUX12lynMN1rbgYgqobVj2lcMUH1OHWCRJkuquq1Tm5KVzWbZwdqNDqYtahmVfPkzZ+skORJIkqd4yk+5SD7/4zOMaHUrd1DIs+7qpCESSJKneHnx8D0/sOdByz5OtVsuw7D8z+CbGAGTmb9UlIkmSpDrp2liZb9eqiymgtmHZLxavfw38cR1jkSRJqquuUg9L583k6cfNa3QodVPLsOznACLizwbeS5IkNaOuUpnVK5cQEY0OpW7ajqDuU4ZmJUmSmsWjO/exufxky94CZUAtc+7uppLYnRoRP6TyhIrMzLPrHZwkSdJkGbi/3ZoWnm8Htc25e1ndo5AkSaqzro1l5sxo54wTFzY6lLoac1g2MzcBJwEvLN4/Wct+kiRJ00lXqYfzVi5mRntrpzFjfruIuBp4M/DWomgG8Ml6BiVJkjSZdu47yH0/3cnqla09JAu19cD9CvDLwB6AzNwKLKhnUJIkSZPpjk09ZLbu82Sr1ZLcHcjMpFgtGxGte2MYSZLUkrpKZdrbgnNPXtzoUOquluTuxoj4CLA4In4H+A/go/UNS5IkafJ0bezhrBMXMndmLWtJm1stNzF+T0T8D2An8EzgbZl5S90jkyRJmgT7e/u4a8t2LrtgZaNDmRK13OduVpHM3VJV9guZ+Z26RiZJkjQJ7t6ygwO9/S39PNlqtQzLfj0ijgOIiGMj4nrgT+oalSRJ0iTpKvUAsGbVkgZHMjVqSe7+FPhqRLwVuBX4Uma+tL5hSZIkTY6uUpmnHzePY+bPanQoU6KWmxh/B3gV8BrgLzPzs3WPSpIkaRL09yfdpXLLP3Ks2pE8W3Yu8MmI+FMAny0rSZKmu/9+bBc79/Wa3A3xMipPpfh74EvA39Q1IkmSpEnStbEMYHI3RA9wI7AQWAQ8mZnb6hqVJEnSJOgq9bBs4SxOWjqn0aFMmVoWVPwH8IHM/Dng/wK3RsTr6xuWJEnSxGQmXaUyq1ctJSIaHc6UqSW5+53M/DJAZn4eeC5wcl2jkiRJmqCHt+/lkR37WHsUDclCbU+o+MGQz3uAN9ctIkmSpEnQVTr65ttBbT13kiRJTWf9xh4WzOrgmT+zoNGhTCmTO0mS1JK6S2XOX7WE9rajZ74dmNxJkqQW1LPnAA88tvuoG5KF2m5ifBrwV8AZwOyB8sx8Wh3jkiRJGrfuTQPPkz36krtaeu7+Gfgw0Au8APg48Il6BiVJkjQRXaUyM9vbOHvFokaHMuVqSe7mZOatQGTmpsx8O/DC+oYlSZI0fl2lMmevWMTsGe2NDmXK1ZLc7YuINuCBiHhDRPwKcHyd45IkSRqXvQf6uHvLDtaccvQNyUJtyd2bgLnAVcD5wGuAy+sYkyRJ0rjd+VAPvf3JmlVLGh1KQ9TybNllmdkF7AZeV+d4JEmSJqS71EMEnH+yPXcjeUfdo5AkSZokXaUyz1y2gEVzZzQ6lIaopedubkScCwy6A2Bm3lGfkCRJksant6+fOzb18MrzVjQ6lIapJblbDryXwcld4opZSZI0zdz3yC72HOg7ahdTQG3J3YbMNJGTJEnT3vpSGeCoXUwBtc2566l7FJIkSZOgu1RmxZI5nLBoTqNDaZgxk7uJ9tpFRHtE3BkRXyw+L42IWyLigeJ1SVXdt0bEhoi4PyIuqio/PyLuLrZ9ICKiKJ8VEZ8pyr8fEauq9rm8OMcDEeGtWyRJanGZSVepfFQ+cqzamMldRJwWETdFxL0R8eDAzxGc443AfVWf3wLcmpmnAbcWn4mIM4BLgTOBi4EPRcTAbaU/DFwJnFb8XFyUXwH0ZOapwPuAdxfHWgpcDTwHWAtcXZ1ESpKk1lN64kke333A5K6GOuN+tmxErAB+CfhoVfElwA3F+xuAV1SVfzoz92fmRmADsDYiTgAWZuZtmZnF+V8xzLFuAi4sevUuAm7JzHJm9gC3cDghlCRJLahrY2W+3dpTju7+nHo/W/bvgD8G+qvKlmXmIwDF68CjzJYDD1XV21KULS/eDy0ftE9m9gI7gGNGOZYkSWpRXaUyS+bO4OnHzW90KA1Vy2rZQc+WBR6mhmfLRsTLgMcy8/aIWFfDeWKYshylfLz7VMd4JZXhXpYtW0ZnZ2cNYWo0u3fv9jo2Oduw+dmGzc32G79v3fckq+a38c1vfrOhcTS6DWtJ7t7E4WfLvpNKr10tCxR+HvjliHgpMBtYGBGfBB6NiBMy85FiyPWxov4W4KSq/VcAW4vyFcOUV++zJSI6gEVAuShfN2SfzqEBZua1wLUAq1evznXr1g2toiPU2dmJ17G52YbNzzZsbrbf+Dy2ax+PfvVWrlh3Guue//SGxtLoNqxltWxXZu7OzC2Z+brMfGVmfq+G/d6amSsycxWVhRLfyMzXADdzODm8HPhC8f5m4NJiBewpVBZOrC+GbndFxAXFfLrLhuwzcKxXFedI4GvAiyNiSbGQ4sVFmSRJakHdpcqd2472xRRQQ89dRPxwuPLMPHuc53wXcGNEXAFsBl5dHO+eiLgRuJfK4o3XZ2Zfsc/vA9cDc4CvFD8AHwM+EREbqPTYXVocqxwR7wS6inrvyMzyOOOVJEnT3PqNZWbPaOPMExc1OpSGq2VYth146UROkpmdFMOimfkEcOEI9a4BrhmmvBs4a5jyfRTJ4TDbrgOuG2/MkiSpeXRvKnPuSUuY2VHLWtHWVssV6AW2A48Wq2U3Zeam+oYlSZJUm137DnLv1p1H9fNkq9WS3C0Cfgg8FBGPR8S/R0RjZypKkiQV7ti8nf48up8nW23MYdliQQRQedwXlWHQ64Hn1S0qSZKkGnWXyrS3BeeebHIHtc25OyQz9wOfjIjddYpHkiTpiKzfWOaMExYyf9YRpTUtq5bVspdNRSCSJElH6kBvP3c9tJ3feM7KRocybdSS4r4H+DSDn/ow8IxXSZKkhrn74R3s7+0/6p8nW62W5O7hzLyq7pFIkiQdoa5S5Ta25690peyAWlbLPuWZrJIkSdNBd6nM046dx3ELZjU6lGmjlp67FRHxgaGF9uZJkqRG6u9Puko9XHTmskaHMq3Uktz9n7pHIUmSdIQ2bNvNjr0HfZ7sELXc5+6GiJgJ/CyVIdr7M/NA3SOTJEkaxfqNlfl2a30yxSC13ArlpcBHgJ9QWTF7SkT8bmZ+pd7BSZIkjaS7VOa4BbM4eencRocyrdQyLPu3wAsycwNA8eixLwEmd5IkqWG6Sj2sXbWUiBi78lGkltWyjw0kdoUHgcfqFI8kSdKYHt6+l4e372W1z5N9ilp67u6JiC8DN1KZc/dqoCsiXgmQmZ+vY3ySJElP0V3c387FFE9VS3I3G3gU+MXi8zZgKfByKsmeyZ0kSZpS6zeWmT+rg9NPWNjoUKadWlbLvm4qApEkSapVd6mH81Yuob3N+XZD1bJadjZwBXAmlV48ADLzt+oYlyRJ0rC2P3mA+x/dxcuffUKjQ5mWallQ8QngZ4CLgG8CK4Bd9QxKkiRpJN2lHgBWO99uWLUkd6dm5p8DezLzBuCXgGfVNyxJkqThdW0qM6M9OOekxY0OZVqqJbk7WLxuj4izgEXAqrpFJEmSNIqujWWetXwRs2e0NzqUaamW5O7aiFgC/DlwM3Av8O66RiVJkjSMfQf7uPvhHazxkWMjqmW17EeLt98EnlbfcCRJkkZ210PbOdiXrHW+3YhG7LmLiNkR8ZaI+L2IaI+IqyPi3yPizyKilvvjSZIkTaqBmxefv9InU4xktGHZvweOB86m0mt3PPA3wOLiVZIkaUqtL/XwzGULWDx3ZqNDmbZG64E7PzPPi4g2Kk+oeH5m9kfEt4HbpyY8SZKkir7+5I5NPVxyzomNDmVaG63n7gBAZvYDW4pXMjOnIjBJkqRq9z2yk937e1nrYopRjbpaNiIGHtj23Kqykzh8exRJkqQp0VXMt/PmxaMbLbm7HEiAzNxXVT4L+N16BiVJkjRUd6mH5YvnsHzxnEaHMq2NOOcuM+8foXxD/cKRJEl6qsxkfanMzz/9mEaHMu3VchNjSZKkhtr0xJNs27XfIdkamNxJkqRpb2C+nYspxmZyJ0mSpr2uUplFc2Zw6nHzGx3KtGdyJ0mSpr3uUg9rVi2hrS0aHcq0Z3InSZKmtW279vPg43tY43y7mpjcSZKkae32Td7f7kiY3EmSpGlt/cYeZnW08azlixodSlMwuZMkSdNaV6nMOSctZmaHaUstvEqSJGna2r2/l3u27vAWKEfA5E6SJE1bd27uoT+db3ckTO4kSdK01VXqoS3gvJMXNzqUpmFyJ0mSpq2ujWXOOHEhC2bPaHQoTcPkTpIkTUsHevu586EeVq90SPZImNxJkqRp6Z6tO9h3sN/FFEfI5E6SJE1LXaWBmxcvaXAkzcXkTpIkTUtdpR5WHTOX4xfMbnQoTcXkTpIkTTv9/Ul3qezzZMehbsldRJwUEf8ZEfdFxD0R8caifGlE3BIRDxSvS6r2eWtEbIiI+yPioqry8yPi7mLbByIiivJZEfGZovz7EbGqap/Li3M8EBGX1+t7SpKkyffg47vpefKgyd041LPnrhf4w8w8HbgAeH1EnAG8Bbg1M08Dbi0+U2y7FDgTuBj4UES0F8f6MHAlcFrxc3FRfgXQk5mnAu8D3l0caylwNfAcYC1wdXUSKUmSprf1G3sAWONiiiNWt+QuMx/JzDuK97uA+4DlwCXADUW1G4BXFO8vAT6dmfszcyOwAVgbEScACzPztsxM4OND9hk41k3AhUWv3kXALZlZzswe4BYOJ4SSJGma6yqVOXb+TFYdM7fRoTSdKZlzVwyXngt8H1iWmY9AJQEEji+qLQceqtptS1G2vHg/tHzQPpnZC+wAjhnlWJIkqQl0FfPtiplYOgId9T5BRMwHPge8KTN3jtJIw23IUcrHu091bFdSGe5l2bJldHZ2jhSbarR7926vY5OzDZufbdjcbD8o7+tnS89enr+srymvRaPbsK7JXUTMoJLY/Utmfr4ofjQiTsjMR4oh18eK8i3ASVW7rwC2FuUrhimv3mdLRHQAi4ByUb5uyD6dQ+PLzGuBawFWr16d69atG1pFR6izsxOvY3OzDZufbdjcbD+4+QdbgTv5tRet5VkrFjU6nCPW6Das52rZAD4G3JeZf1u16WZgYPXq5cAXqsovLVbAnkJl4cT6Yuh2V0RcUBzzsiH7DBzrVcA3inl5XwNeHBFLioUULy7KJEnSNNe1scy8me2cfsKCRofSlOrZc/fzwG8Cd0fEXUXZnwDvAm6MiCuAzcCrATLznoi4EbiXykrb12dmX7Hf7wPXA3OArxQ/UEkePxERG6j02F1aHKscEe8Euop678jMcp2+pyRJmkRdpTLnrVxCR7u34x2PuiV3mfkdhp/7BnDhCPtcA1wzTHk3cNYw5fsoksNhtl0HXFdrvJIkqfF2PHmQ+x/dxUufdUKjQ2lapsSSJGnauH1zmUyfJzsRJneSJGna6Cr1MKM9OPckk7vxMrmTJEnTRtfGMmctX8Scme1jV9awTO4kSdK0sO9gHz/cssPnyU6QyZ0kSZoWfrhlBwf6+k3uJsjkTpIkTQtdpcpdy1avdL7dRJjcSZKkaaGrVOa04+ezZN7MRofS1EzuJElSw/X1J7eXelhzikOyE2VyJ0mSGu7+n+5i1/5e1nh/uwkzuZMkSQ03MN/OxRQTZ3InSZIabn2pzAmLZrN88ZxGh9L0TO4kSVJDZSbdpTJrVi0lYqTH0qtWJneSJKmhHirv5dGd+51vN0lM7iRJUkMdmm/nStlJYXInSZIaqqtUZuHsDp5x/IJGh9ISTO4kSVJDrS+VWb1qKW1tzrebDCZ3kiSpYZ7YvZ8Ht+3xFiiTyOROkiQ1TFepB8DFFJPI5E6SJDVMd6nMzI42nrViUaNDaRkmd5IkqWG6SmXOOWkxszraGx1KyzC5kyRJDfHkgV5+tHWnQ7KTzOROkiQ1xJ2bt9PXny6mmGQmd5IkqSHWbywTAeettOduMpncSZKkhujeVOb0n1nIwtkzGh1KSzG5kyRJU+5gXz93bNrufLs6MLmTJElT7t6tO9l7sM/nydaByZ0kSZpyXaUygIsp6sDkTpIkTbn1G8ucvHQuyxbObnQoLcfkTpIkTanMpHtTj712dWJyJ0mSptRPtu2hvOeAiynqxOROkiRNqe6B+XYupqgLkztJkjSl1pfKHDNvJk87dl6jQ2lJJneSJGlKdZd6WL1qCRHR6FBaksmdJEmaMo/u3Mfm8pMupqgjkztJkjRl1m/0/nb1ZnInSZKmTHepzNyZ7Zx54sJGh9KyOhodgCRJal2ZyZ4Dfezad5Bd+3r57k+e4NyTF9PRbv9SvZjcSZKkYWUm+w72s3PfQXbtO8jOfb3s2tdbeb+391DCdnjb0DoH2b2/l/4cfNxLzjmxMV/oKGFyJ0lSi9p3sO9QorVrX2+RpFV/7mXn3sFlu/YPTtx6h2ZmQ7QFLJg9gwWzOw69Ll88h4WzFwwqWzin8rpozgzn29WZyZ0kSdPQwb7+p/SS7RzSSzZ84na4zoHe/lHPEQHzZx5OvBbM7uD4BbN5+nEdLBySsA0kaAsHlc1g3sx2b2kyzZjcSZKOapnJgb5+DvYlB3r7OdjXz4He/qKsn4O9yYG+Pg705qFtB/sq2yvv8yn7DNQ52JfsP/S+et/kQG/fsPvu3LOP/bd+hX0HR0/MAObNbB/UM7Z03kxWHjPvcDI2+6nJ2MI5hz/Pn9lBW5uJWasxuZOkBsrMQ3/gB/+Rz2GSiOo6ycEhycSBIhEplQ7wg94HGv3V6iJJ+vuzSI6GXpPqBCqHvW7DlR/sG33YcTxmtAcz2tuY2dFWeT30fnD5nBntLJozY1D5E489yjOfdjILZnVUDWfOGJKwzWD+7A7aTcw0DJM7SS0nM+nrT/qK197+pK+veO3PYXtYjrgXZtD2oudnmGRsIOE62Nc/TA9OZb+62PDf9TnuNDGzY/iEaWZ7W1XyFCyY3cGsIpEanGzFoffV+x4ui2GO18bMjmBmezszOmJI0lYVS1vbhHrDOjs7Wbfu9Em8WjramNxJTSAzyYS+TPoz6e+H/qwkL/39SX9CX39WkpqsfK6UV5KZ/qzUP/S5av9KIlRs709+9Hgfef9j9PUNSY76++ntqxxjIEnq7RuSRPUV9Yrth/c9fIy+fgbVqa5b+dx/qLz/KfsPX28g1uo69TSjPSp/9IfplalOGObN6mDxoUSh/dB+T00qRurlGZJkDEo2hiQZxbaOtuBb3/om635xXV2vQSNF4BwvaRQmd6rJaD0hh/7Y9yU/3dPPhsd2D0okskg8BsoGEpFDScmhhGXsJGUgwTlU5ymJC4OPlTko9kGxDFNn0PnGSJBG/F5VsRw+7uH9h9v3qece/LnOucpTdXdNaPeOtqC9LQ6/trfR3ha0x8Dnw9vbYuBz26H6M9rbmD1jyDGK3pChx24f9LlthPLq+ocTseF7dAb3Bh2qcyiximmfWLRFOI9KOoqZ3E2h/7z/MfYf7B/U6zBc78bh3or+UXsvquuMfqz+p+w7uF4//f1MXk/It79Zv4s4Dm1x+I9de0Tlc5FUtLfF4e3F5wiK8sq2w++DtjZoj8of9+p9O9rahtk3aG87fO62CNqj+jPFPoPjaq+qP1KdQceujuXQeYbEMnC+obEfuiaV79YWwd0/uIvzzz9vUFI1NJkanHAxqI5JhSQ1lsndFLrqU3eya1/vuPad0V71xzQ41BMyWu9FdS/HSD0hI/VwtLUdWU/IwPv77/8xZ515xoiJRFsNScrQBKlthCRlUCJTJF3VScpAgjPde1mmm32b2znv5CWNDkOSNE4tndxFxMXA+4F24KOZ+a5GxvPpKy8gqAxBVXp7Bg9RtQ/0ALVXJU5NNrzSuWsD657tncclSWqUlk3uIqId+CDwP4AtQFdE3JyZ9zYqpjNPXNSoU0uSpKNEKz+1dy2wITMfzMwDwKeBSxockyRJUl21cnK3HHio6vOWokySJKllteywLDDcRLVBSz4j4krgSoBly5bR2dk5BWG1tt27d3sdm5xt2Pxsw+Zm+zW/RrdhKyd3W4CTqj6vALZWV8jMa4FrAVavXp3r1q2bsuBaVeXO6usaHYYmwDZsfrZhc7P9ml+j27CVh2W7gNMi4pSImAlcCtzc4JgkSZLqqmV77jKzNyLeAHyNyq1QrsvMexocliRJUl21bHIHkJlfBr7c6DgkSZKmSisPy0qSJB11TO4kSZJaiMmdJElSC4nMHLvWUSAitgGbGh1HCzgWeLzRQWhCbMPmZxs2N9uv+U1FG67MzOOG22Byp0kVEd2ZubrRcWj8bMPmZxs2N9uv+TW6DR2WlSRJaiEmd5IkSS3E5E6T7dpGB6AJsw2bn23Y3Gy/5tfQNnTOnSRJUgux506SJKmFmNxpXCLi4oi4PyI2RMRbhtn+GxHxw+LnuxHx7EbEqZGN1YZV9dZERF9EvGoq49Poamm/iFgXEXdFxD0R8c2pjlGjq+G/o4si4t8j4gdFG76uEXFqeBFxXUQ8FhE/GmF7RMQHivb9YUScN1WxmdzpiEVEO/BB4CXAGcCvRcQZQ6ptBH4xM88G3olzSKaVGttwoN67ga9NbYQaTS3tFxGLgQ8Bv5yZZwKvnuo4NbIa/w2+Hrg3M58NrAPeGxEzpzRQjeZ64OJRtr8EOK34uRL48BTEBJjcaXzWAhsy88HMPAB8GrikukJmfjcze4qP3wNWTHGMGt2YbVj4A+BzwGNTGZzGVEv7/Trw+czcDJCZtuH0UksbJrAgIgKYD5SB3qkNUyPJzG9RaZORXAJ8PCu+ByyOiBOmIjaTO43HcuChqs9birKRXAF8pa4R6UiN2YYRsRz4FeAfpzAu1aaWf4PPAJZERGdE3B4Rl01ZdKpFLW34D8DpwFbgbuCNmdk/NeFpEhzp38pJ0zEVJ1HLiWHKhl12HREvoJLc/UJdI9KRqqUN/w54c2b2VToONI3U0n4dwPnAhcAc4LaI+F5m/ne9g1NNamnDi4C7gBcCTwduiYhvZ+bOOsemyVHz38rJZnKn8dgCnFT1eQWV/7McJCLOBj4KvCQzn5ii2FSbWtpwNfDpIrE7FnhpRPRm5r9NSYQaTS3ttwV4PDP3AHsi4lvAswGTu+mhljZ8HfCurNyzbENEbAR+Flg/NSFqgmr6W1kPDstqPLqA0yLilGJy76XAzdUVIuJk4PPAb9pTMC2N2YaZeUpmrsrMVcBNwP80sZs2xmw/4AvA8yKiIyLmAs8B7pviODWyWtpwM5WeVyJiGfBM4MEpjVITcTNwWbFq9gJgR2Y+MhUntudORywzeyPiDVRWULYD12XmPRHxe8X2fwTeBhwDfKjo+en1QdjTR41tqGmqlvbLzPsi4qvAD4F+4KOZOewtGzT1avw3+E7g+oi4m8oQ35sz8/GGBa1BIuJTVFYxHxsRW4CrgRlwqP2+DLwU2AA8SaUndmpi8wkVkiRJrcNhWUmSpBZicidJktRCTO4kSZJaiMmdJElSCzG5kyRJaiHeCkVSy4uIPiqPbxqwFLg5M9/QoJAkqW5M7iQdDfZm5jkDHyLitVSewCFJLcdhWUlHtYg4LiI+FxFdxc/PF+Vvj4hPRMQ3IuKBiPidonxdRHyxav8/ioi3F+/bI+JviuP8MCJ+d7R9IuJ5EXFXRNwbEXuL93cVdUoRcWzx/pMR8aOq/V8bEduK+uWIeFVRvruqzrerzynp6GHPnaSj3fuB92Xmd4rH5n0NOL3YdjZwATAPuDMivjTGsa6g8oihNRExC/iviPj6SJUz89vAORGxCvhide/igIh4FnDWkOJ24FOZeVVEXD/MPr8ELAJ2jBGvpBZkcifpaPci4IziMXkACyNiQfH+C5m5F9gbEf8JrAW2j3KsFwNnD/SkUUmwTgMOUHnO611F+XHAP9UY319QeazRNVVlc4B9w1WOyhf5U+AvgdfUeA5JLcTkTtLRrg14bpHEHVIke0OfzzjW8xoD+IPM/NqQY60Dvp2ZLys+/xEwv4bYfg7YDfxgSPmJwNYR9vk1oBP4aQ3Hl9SCnHMn6Wj3deDQqtmIOKdq2yURMTsijqHygPCuMY71NeD3I2JGcaxnRMS8CcT2duBt1QURMQd4GfBfw9RvA/4X8NcTOKekJmfPnaSj3VXAByPih1T+m/gt4PeKbeuBLwEnA+/MzK0R8Qzg5yLiO0Wd5UB7RHwB+CiwCrijGB7dBrxiArF9PzN/UszJG/AV4DOZOVyiOQe4KTO3Vw0zSzrKROZYowySdPQpVsDuzsz31Fi3MzM76xyWJI3JnjtJmrhvAJsaHYQkgT13kiRJLcUFFZIkSS3E5E6SJKmFmNxJkiS1EJM7SZKkFmJyJ0mS1EJM7iRJklrI/w8U8OJWMNP6qgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10, 5)) \n",
+ "plt.title('Заработная плата женщин в перцентилях') \n",
+ "plt.xlabel('Перцентили') \n",
+ "plt.ylabel('Зарплата женщин') \n",
+ "plt.grid() \n",
+ "\n",
+ "plt.plot(female_salary) \n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "01aef10d",
+ "metadata": {},
+ "source": [
+ "# 7. Построить графики распределения по заработной плате мужчин и женщин в зависимости от высшего образования"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 201,
+ "id": "5d73aec6",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " educationType \n",
+ " salary \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " Высшее \n",
+ " 38536.860696 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " Незаконченное высшее \n",
+ " 36036.267699 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " Среднее \n",
+ " 28511.660356 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " Среднее профессиональное \n",
+ " 29848.650757 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " educationType salary\n",
+ "0 Высшее 38536.860696\n",
+ "1 Незаконченное высшее 36036.267699\n",
+ "2 Среднее 28511.660356\n",
+ "3 Среднее профессиональное 29848.650757"
+ ]
+ },
+ "execution_count": 201,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "male_salary = data.groupby('educationType').agg('mean').reset_index()\n",
+ "male_salary"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 202,
+ "id": "46485e51",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " educationType \n",
+ " salary \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " Высшее \n",
+ " 33826.008009 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " Незаконченное высшее \n",
+ " 29171.382643 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " Среднее \n",
+ " 24958.723963 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " Среднее профессиональное \n",
+ " 25834.460409 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " educationType salary\n",
+ "0 Высшее 33826.008009\n",
+ "1 Незаконченное высшее 29171.382643\n",
+ "2 Среднее 24958.723963\n",
+ "3 Среднее профессиональное 25834.460409"
+ ]
+ },
+ "execution_count": 202,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "female_salary = data.query('gender == \"Женский\"').groupby('educationType').agg('mean').reset_index()\n",
+ "female_salary"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 203,
+ "id": "249f419d",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAGECAYAAAA2vVfTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAz30lEQVR4nO3de5xVddn38c9XIEFN80CGDMpBKgERZERMU9IMypIsTbQ7NSnKQLN6zMNd4p3VbY+mpj3aI5ngIZXbUsnyLOhTt4mDEgiK4q3JiCngCRWRw/X8sX4z7hmGOe7Za/bM9/167dde+9prba692LOutX7rt35LEYGZmdlWeSdgZmYdgwuCmZkBLghmZpa4IJiZGeCCYGZmiQuCmZkBLSgIkrpJelzSHen1TpLulfRMet6xYN6zJS2TtFTSuIL4KEmL0nuXSVKKby3p5hR/RFL/In5HMzNrhu4tmPe7wJPA9un1WcD9EXGBpLPS6zMlDQEmAkOB3YD7JH00IjYCVwKTgb8DfwHGA3cCk4DXImJPSROBXwDHNpbMLrvsEv37929B+mZmNn/+/FUR0buh95pVECRVAEcAPwO+n8ITgLFpeiYwFzgzxW+KiHXAc5KWAaMlPQ9sHxEPp8+8FvgiWUGYAJyXPusW4NeSFI1cNde/f3+qqqqak76ZmSWS/rml95rbZHQp8ENgU0Fs14h4CSA9fzjF+wLLC+arTrG+abp+vM4yEbEBeAPYuYEvMllSlaSqlStXNjN1MzNrjiYLgqTPA69ExPxmfqYaiEUj8caWqRuIuCoiKiOisnfvBo94zMyslZrTZHQgcKSkzwE9ge0lXQ+8LKlPRLwkqQ/wSpq/GuhXsHwFsCLFKxqIFy5TLak7sAPwaiu/k5mZtUKTBSEizgbOBpA0FvhfEfFvki4ETgQuSM+3p0VmA7+XdDHZSeXBwLyI2ChpjaQxwCPACcDlBcucCDwMHA080Nj5A7P2sn79eqqrq3n33XfzTsWsTXr27ElFRQU9evRo9jIt6WVU3wXALEmTgBeAYwAiYrGkWcASYAMwJfUwAjgFmAH0IjuZfGeKXw1cl05Av0rWS8ms5Kqrq/ngBz9I//79Sb2izcpORLB69Wqqq6sZMGBAs5drUUGIiLlkvYmIiNXAYVuY72dkPZLqx6uAYQ3E3yUVFLM8vfvuuy4GVvYksfPOO9PSzje+UtmsHhcD6wxa8zt2QTAzM6CLFgQp34eVjzz+7//1r38xceJEBg0axJAhQ/jc5z7H008/3b5f1IwuWhDMOqqI4KijjmLs2LE8++yzLFmyhJ///Oe8/PLLeadmXYALglkHMmfOHHr06MG3v/3t2tiIESP45Cc/ydy5czn44IM56qijGDJkCN/+9rfZtCkbPOCee+7hgAMOYN999+WYY47hrbfeql1+2LBhDBkyhBEjRrDddtvVxgunq6qqGDt2LACvvvoqY8eOZfjw4XzsYx9rMl7o7rvvZtSoUeyzzz4ccsghtYXslFNOobKykqFDhzJt2rTa+fv378+ZZ57J6NGjGT16NMuWLQPgpJNOYsCAAYwYMYIRI0bQq1cvnn/+eQCef/55evXqxYgRI9h9992ZOnUqANOnT2e//fZjn3324ctf/jLvvPMOzz77bO1ndOvWrXZ6xYoVDc5f33nnnUevXr14/fXXAbjzzjuRxNy5c7n66qv53ve+Vzvv9OnT+f73v8/y5csZOXIk//znP+us56effprKykpWrlzJ3Llz+fznP19nPaxatYrnn3+eYcOyfjfr169n4MCBtd/vpJNO4pZbbqnz/1qzTorFBcGsA3niiScYNWrUFt+fN28ev/zlL1m0aBHPPvssf/zjH1m1ahU//elPue+++3jssceorKzk4osvrl1m48aN3HXXXSxYsKBZOdxwww0MGzaMhQsXcsMNNzQZLzRu3Djmz5/PggULqKio4LbbbgPgZz/7GVVVVSxcuJAHH3yQhQsX1i6z/fbbM2/ePKZOncrpp59eG7/wwgtZsGABCxYsYNCgQXW+z+DBg1mwYAE/+clPauNf+tKXePTRR/nHP/7BXnvtxdVXX82gQYNqP6NXr16107vttluD8zdk+PDh/P73vwfg2muvrf3/mThxIrNnz2b9+vUAXHPNNXz961+nX79+TJ8+na985Su8+eabAKxevZrjjz+ea6+9lt69e7PVVlvR1KVWV111VZ2iXQouCGZlZPTo0QwcOJBu3bpx3HHH8de//pW///3vLFmyhAMPPJARI0Ywc+bM2r1TgLfeeouddtpps89au3Zt7R7zV7/61dp4t27dWLNmzWbzbyle329/+1sqKip45plnOOqoowCYNWsW++67LyNHjmTx4sUsWbKkdv7jjjuu9vnhhx9u8vPXrl1Lz549N4s/8cQTfPKTn2TvvffmhhtuYPHixY1+TnPnP/LII5k9ezavvvoq69ev5yMf+QgA2267LYceeih33HEHTz31FOvXr2fvvfcGoLKykoEDB3LssceyadMmvvSlLzFy5EiGDBkCQEVFBU8++eQWL4B85513uOaaazjllFPqxM8444za/7Nnn3228RXVCi4IZh3I0KFDmT9/y8OG1e9KKImI4PDDD6/d+12yZEnt3u67777L2rVrG9zTLNxjLtzj/9rXvsarr77KRz7ykTqFYkvx+r7xjW9QXV1NZWUlc+fO5bnnnuOiiy7i/vvvZ+HChRxxxBF1NoSF36k5XSVXrFjBbrvttln8pJNO4te//jWLFi1i2rRpTV5t3tz5t956awYPHsyZZ57J8ccfv9l3nTFjRu3RQY2qqipWrFjB2LFjWbt2LccccwwLFy6sLYQDBw7k+OOPZ999961twip06aWXMnnyZHr16lUnvqWjpmJxQTDrQA499FDWrVvH9OnTa2OPPvooDz74IJA1GT333HNs2rSJm2++mYMOOogxY8bwt7/9rbb9/Z133qntlXTrrbcyfvz4FuWw3Xbb0b17d6699to6hWJL8UI1be2S6NGjB4sXL+bNN99k2223ZYcdduDll1/mzjvvrLPMzTffXPt8wAEHNJnff/3Xf3HggQduFl+zZg19+vRh/fr1W8yvtfNPmjSJxx9/nC984Qt14vvvvz/Lly/n97//fe2RzqZNmzjttNP49a9/zZlnnsm2227L1KlTueyyy2rPBwD89Kc/ZcmSJbVNWDXeeOMNbrvtNk4++eQmv0OxuSCYNSKiuI+mSOLWW2/l3nvvZdCgQQwdOpTzzjuvdoNxwAEHcNZZZzFs2DAGDBjAUUcdRe/evZkxYwbHHXccw4cPZ8yYMTz11FNUVVUxadIk5s6dW9vMsHbtWs4999xGc7jwwgsZPnw4n/nMZ5oVL3T99dczfPhwhgwZwpIlS/jOd77DPvvsw8iRIxk6dCgnn3zyZhvzdevWsf/++/OrX/2KSy65pNHcfvjDH/L2228zZcqUzd47//zz2X///Tn88MP5+Mc/3ujntHT+ESNGUFVV1eC4QF/5ylc48MAD2XHH7KaRv/nNbzjggANqm49q7L///uy5555cd911jf5b1dXV/OAHP6B797aMLNRKEVGWj1GjRkVrFf/PvGUP67iWLFmSdwpbNGfOnDjiiCNaNP+0adPqxNasWRMnnnhicRNrgz322CNWrlyZdxptcsQRR8R9992XdxoNauj3DFTFFrarOZQgMyuFIUOGsMsuu9SJ9ezZc7MTldY6r7/+OqNHj2afffbhsMMaHNat7CjKdJTpysrKaO0tNPO+WrhMV3mX8OSTT7LXXnvlnYZZUTT0e5Y0PyIqG5rf5xDMzAxwQTAzs8QFwczMgLbdMc26KJ+DMeucfIRg1pgcxr/28NeWlyYLgqSekuZJ+oekxZL+I8XPk/SipAXp8bmCZc6WtEzSUknjCuKjJC1K712mdJ26pK0l3Zzij0jq3w7f1azDCw9/bTlqzhHCOuDQiNgHGAGMlzQmvXdJRIxIj78ASBoCTASGAuOBKyR1S/NfCUwGBqdHzTX1k4DXImJP4BLgF23+ZmZlyMNfd6zhr3/7299y/PHHExHMmDGj9t+68MILOfXUUwF4++23Ofnkk9lvv/0YOXIkt99+O0Cd+QGmTp3KjBkzar/3qlWrAPj85z/P3LlzAbjooos477zzNlt+6dKldO/evXb468LlV61aRf/+/TfLvTWaLAjp4raaX1eP9GisFXcCcFNErIuI54BlwGhJfYDtI+LhdLXctcAXC5aZmaZvAQ6rOXow60o8/PXptfGOMPz1N77xDSoqKuoUsdtuu425c+dy6aWX1n63Qw89lEcffZQ5c+Zwxhln8PbbbzdrXTfXj3/842YNx9FWzTqpnPbw5wN7Av8nIh6R9FlgqqQTgCrgBxHxGtAX+HvB4tUptj5N14+TnpcDRMQGSW8AOwOr6uUxmewIg913370FX9Osc6gZ/hqoHf66Z8+etcNfA7z33nt1Bolravjrmuk+ffoAxRn+etq0afTt27d2bKJZs2Zx1VVXsWHDBl566SWWLFnC8OHDa79HzXPhDWe2pLHhr3/0ox/x+uuv89ZbbzFu3LgGlm75/Oeccw677bYbBx98MG+//TbXXHMN99xzD926ZQ0f99xzD7Nnz+aiiy4CshFmX3jhBSAbsO+vf/0rAC+++CKVlQ1eD9ao+fPns2nTps2W/dSnPkW3bt3YuHFjiz9zS5p1UjkiNkbECKCCbG9/GFnzzyCyZqSXgF+m2Rvas49G4o0tUz+PqyKiMiIqe/fu3ZzUzcqKh7/ueMNfn3vuufznf/4nq1at4umnn2bmzJmcc845tTe4iQj+8Ic/1K7LF154ofbq4GOPPbY2fuyxxzb53Rryox/9iPPPP3+z+Jw5c1iwYAFz5sxp1ec2pEW9jCLidWAuMD4iXk6FYhMwHRidZqsG+hUsVgGsSPGKBuJ1lpHUHdgBeLUluZl1Bh7+umMNf71gwQIee+wxTjvtNKZOncoxxxzD0UcfzdChQ2vPB4wbN47LL7+8tkA8/vjjTf7bzfXggw/Sp0+fkg2n0mSTkaTewPqIeF1SL+DTwC8k9YmIl9JsRwFPpOnZwO8lXQzsRnbyeF5EbJS0Jp2QfgQ4Abi8YJkTgYeBo4EHolwHWbLOpcQ/w5rhr08//XQuuOACevbsSf/+/bn00kt58cUXa4e/XrRoUe0J5q222qp2+Ot169YB2Vj7b775JpMmTWKnnXaq0zR07rnn1ml7r69wmOvC8cK2FC90/fXX1zYN9e3bl+uvv55dd921dvjrgQMHbnH4602bNnHjjTc2un6aM/z1Hnvswd57791k81ZT80cEU6dO5fLLL9/syOXnP/85Bx10EBMmTODHP/4xp59+OsOHDyci6N+/P3fccUej/zZkJ5O7d+/OkiVLOPXUU9lhhx148cUX2bhxIxMmTADgmWee4c9//nOTn1U0WxoGteYBDAceBxaSbfTPTfHrgEUpPhvoU7DMvwPPAkuBzxbEK9NnPAv8mvcH1+sJ/BfZCeh5wMCm8vLw1/npzOvPw1+XVmcY/rrYpk2bFnPmzCnKZxV9+OuIWAiMbCD+tUaW+RnwswbiVcCwBuLvAsc0lYuZNZ+Hvy5Phx56KHvssUcu/7aHv85Bma7yWp15/Xn4a+tMWjr8tccyykNn3qJ2AhHRrN4uZh1Za3b2PZaRWYGePXuyevXqVv0xmXUUEcHq1asbvF6jMT5CMCtQUVFBdXU1K1euzDsVszbp2bMnFRUVTc9YwAXBrECPHj0YMGBA3mmY5cJNRmZmBrggmJlZ4oJgZmaAC4KZmSUuCGZmBrggmJlZ4oJgZmaAC4KZmSUuCGZmBrggmJlZ4oJgZmaAC4KZmSUuCGZmBjSjIEjqKWmepH9IWizpP1J8J0n3SnomPe9YsMzZkpZJWippXEF8lKRF6b3LlO5CImlrSTen+COS+rfDdzUzs0Y05whhHXBoROwDjADGSxoDnAXcHxGDgfvTayQNASYCQ4HxwBWSuqXPuhKYDAxOj/EpPgl4LSL2BC4BftH2r2ZmZi3RZEGIzFvpZY/0CGACMDPFZwJfTNMTgJsiYl1EPAcsA0ZL6gNsHxEPR3Y7qmvrLVPzWbcAh8n3MDQzK6lmnUOQ1E3SAuAV4N6IeATYNSJeAkjPH06z9wWWFyxenWJ903T9eJ1lImID8AawcwN5TJZUJanKd7QyMyuuZhWEiNgYESOACrK9/WGNzN7Qnn00Em9smfp5XBURlRFR2bt37yayNrPOSsr30Vm1qJdRRLwOzCVr+385NQORnl9Js1UD/QoWqwBWpHhFA/E6y0jqDuwAvNqS3MzMrG2a08uot6QPpelewKeBp4DZwIlpthOB29P0bGBi6jk0gOzk8bzUrLRG0ph0fuCEesvUfNbRwAPpPIOZmZVI92bM0weYmXoKbQXMiog7JD0MzJI0CXgBOAYgIhZLmgUsATYAUyJiY/qsU4AZQC/gzvQAuBq4TtIysiODicX4cmZm1nwq1x3xysrKqKqqatWyebcBRoOnTEqZQNv+z73+yvNvpjPJ/TdYxj8BSfMjorKh93ylspmZAS4IZmaWNOccgpkVUd7NHVDeTR7WfnyEYGZmgAuCmZklLghmZga4IJiZWeKCYGZmgAuCmZklLghmZga4IJiZWeKCYGZmgAuCmZklLghmZga4IJiZWeKCYGZmgAuCmZklHv7azKyl8h7DvJ3GL2/yCEFSP0lzJD0pabGk76b4eZJelLQgPT5XsMzZkpZJWippXEF8lKRF6b3LpGytStpa0s0p/oik/u3wXc3MrBHNaTLaAPwgIvYCxgBTJA1J710SESPS4y8A6b2JwFBgPHCFpG5p/iuBycDg9Bif4pOA1yJiT+AS4Bdt/2pmZtYSTRaEiHgpIh5L02uAJ4G+jSwyAbgpItZFxHPAMmC0pD7A9hHxcEQEcC3wxYJlZqbpW4DDao4ezMysNFp0Ujk15YwEHkmhqZIWSvqdpB1TrC+wvGCx6hTrm6brx+ssExEbgDeAnRv49ydLqpJUtXLlypakbmaFpHwf1iE1uyBI2g74A3B6RLxJ1vwzCBgBvAT8smbWBhaPRuKNLVM3EHFVRFRGRGXv3r2bm7qZmTVDswqCpB5kxeCGiPgjQES8HBEbI2ITMB0YnWavBvoVLF4BrEjxigbidZaR1B3YAXi1NV/IzMxapzm9jARcDTwZERcXxPsUzHYU8ESang1MTD2HBpCdPJ4XES8BaySNSZ95AnB7wTInpumjgQfSeQYzMyuR5lyHcCDwNWCRpAUpdg5wnKQRZE07zwPfAoiIxZJmAUvIeihNiYiNablTgBlAL+DO9ICs4FwnaRnZkcHEtnwpMzNrOZXrjnhlZWVUVVW1atm8z2lFg6dMSplA2/7Pvf7Ke/2B12FblfP6kzQ/Iiobes9DV5iZGeCCYGZmiQuCmZkBLghmZpa4IJiZGeCCYGZmiQuCmZkBLghmZpa4IJiZGeCCYGZmiQuCmZkBLghmZpa4IJiZGeCCYGZmiQuCmZkBLghmZpa4IJiZGeCCYGZmSZMFQVI/SXMkPSlpsaTvpvhOku6V9Ex63rFgmbMlLZO0VNK4gvgoSYvSe5dJ2Y3wJG0t6eYUf0RS/3b4rmZm1ojmHCFsAH4QEXsBY4ApkoYAZwH3R8Rg4P70mvTeRGAoMB64QlK39FlXApOBwekxPsUnAa9FxJ7AJcAvivDdzMysBZosCBHxUkQ8lqbXAE8CfYEJwMw020zgi2l6AnBTRKyLiOeAZcBoSX2A7SPi4YgI4Np6y9R81i3AYTVHD2ZmVhotOoeQmnJGAo8Au0bES5AVDeDDaba+wPKCxapTrG+arh+vs0xEbADeAHZu4N+fLKlKUtXKlStbkrqZmTWh2QVB0nbAH4DTI+LNxmZtIBaNxBtbpm4g4qqIqIyIyt69ezeVspmZtUCzCoKkHmTF4IaI+GMKv5yagUjPr6R4NdCvYPEKYEWKVzQQr7OMpO7ADsCrLf0yZmbWes3pZSTgauDJiLi44K3ZwIlp+kTg9oL4xNRzaADZyeN5qVlpjaQx6TNPqLdMzWcdDTyQzjOYmVmJdG/GPAcCXwMWSVqQYucAFwCzJE0CXgCOAYiIxZJmAUvIeihNiYiNablTgBlAL+DO9ICs4FwnaRnZkcHEtn0tMzNrKZXrjnhlZWVUVVW1atm8+y9Fg6dMSplA2/7Pvf7Ke/2B12FblfP6kzQ/Iiobes9XKpuZGeCCYGZmiQuCmZkBLghmZpa4IJiZGeCCYGZmiQuCmZkBLghmZpa4IJiZGeCCYGZmiQuCmZkBLghmZpa4IJiZGeCCYGZmiQuCmZkBLghmZpa4IJiZGeCCYGZmSZMFQdLvJL0i6YmC2HmSXpS0ID0+V/De2ZKWSVoqaVxBfJSkRem9y6TsJniStpZ0c4o/Iql/kb+jmZk1Q3OOEGYA4xuIXxIRI9LjLwCShgATgaFpmSskdUvzXwlMBganR81nTgJei4g9gUuAX7Tyu5iZWRs0WRAi4iHg1WZ+3gTgpohYFxHPAcuA0ZL6ANtHxMMREcC1wBcLlpmZpm8BDqs5ejAzs9JpyzmEqZIWpialHVOsL7C8YJ7qFOubpuvH6ywTERuAN4CdG/oHJU2WVCWpauXKlW1I3czM6mttQbgSGASMAF4CfpniDe3ZRyPxxpbZPBhxVURURkRl7969W5SwmZk1rlUFISJejoiNEbEJmA6MTm9VA/0KZq0AVqR4RQPxOstI6g7sQPObqMzMrEhaVRDSOYEaRwE1PZBmAxNTz6EBZCeP50XES8AaSWPS+YETgNsLljkxTR8NPJDOM5iZWQl1b2oGSTcCY4FdJFUD04CxkkaQNe08D3wLICIWS5oFLAE2AFMiYmP6qFPIeiz1Au5MD4CrgeskLSM7MphYhO9lZmYtpHLdGa+srIyqqqpWLZt3H6Zo8LRJKRNo2/+51195rz/wOmyrcl5/kuZHRGVD7/lKZTMzA1wQzMwscUEwMzPABcHMzBIXBDMzA1wQzMwscUEwMzPABcHMzBIXBDMzA1wQzMwscUEwMzPABcHMzBIXBDMzA1wQzMwscUEwMzPABcHMzBIXBDMzA5pRECT9TtIrkp4oiO0k6V5Jz6TnHQveO1vSMklLJY0riI+StCi9d1m6tzLp/ss3p/gjkvoX+TuamVkzNOcIYQYwvl7sLOD+iBgM3J9eI2kI2T2Rh6ZlrpDULS1zJTAZGJweNZ85CXgtIvYELgF+0dovY2ZmrddkQYiIh4BX64UnADPT9EzgiwXxmyJiXUQ8BywDRkvqA2wfEQ9HdhPna+stU/NZtwCH1Rw9mJlZ6bT2HMKuEfESQHr+cIr3BZYXzFedYn3TdP14nWUiYgPwBrBzK/MyM7NWKvZJ5Yb27KOReGPLbP7h0mRJVZKqVq5c2coUzcysIa0tCC+nZiDS8yspXg30K5ivAliR4hUNxOssI6k7sAObN1EBEBFXRURlRFT27t27lambmVlDWlsQZgMnpukTgdsL4hNTz6EBZCeP56VmpTWSxqTzAyfUW6bms44GHkjnGczMrIS6NzWDpBuBscAukqqBacAFwCxJk4AXgGMAImKxpFnAEmADMCUiNqaPOoWsx1Iv4M70ALgauE7SMrIjg4lF+WZmZtYiKted8crKyqiqqmrVsnn3YYoGT5uUMoG2/Z97/ZX3+gOvw7Yq5/UnaX5EVDb0nq9UNjMzwAXBzMwSFwQzMwNcEMzMLHFBMDMzwAXBzMwSFwQzMwNcEMzMLHFBMDMzwAXBzMwSFwQzMwNcEMzMLHFBMDMzwAXBzMwSFwQzMwNcEMzMLHFBMDMzwAXBzMySNhUESc9LWiRpgaSqFNtJ0r2SnknPOxbMf7akZZKWShpXEB+VPmeZpMukvG+QZ2bW9RTjCOFTETGi4B6dZwH3R8Rg4P70GklDgInAUGA8cIWkbmmZK4HJwOD0GF+EvMzMrAXao8loAjAzTc8EvlgQvyki1kXEc8AyYLSkPsD2EfFwRARwbcEyZmZWIm0tCAHcI2m+pMkptmtEvASQnj+c4n2B5QXLVqdY3zRdP25mZiXUvY3LHxgRKyR9GLhX0lONzNvQeYFoJL75B2RFZzLA7rvv3tJczcysEW06QoiIFen5FeBWYDTwcmoGIj2/kmavBvoVLF4BrEjxigbiDf17V0VEZURU9u7duy2pm5lZPa0uCJK2lfTBmmngM8ATwGzgxDTbicDtaXo2MFHS1pIGkJ08npealdZIGpN6F51QsIyZmZVIW5qMdgVuTT1EuwO/j4i7JD0KzJI0CXgBOAYgIhZLmgUsATYAUyJiY/qsU4AZQC/gzvQwM7MSUtaxp/xUVlZGVVVVq5bN+yqHaPC0SSkTaNv/uddfea8/8Dpsq3Jef5LmF1wmUIevVDYzM8AFwczMEhcEMzMDXBDMzCxxQTAzM8AFwczMEhcEMzMDXBDMzCxxQTAzM8AFwczMEhcEMzMDXBDMzCxxQTAzM8AFwczMEhcEMzMDXBDMzCxxQTAzM8AFwczMkg5TECSNl7RU0jJJZ+Wdj5lZV9MhCoKkbsD/AT4LDAGOkzQk36zMzLqWDlEQgNHAsoj4n4h4D7gJmJBzTmZmXUr3vBNI+gLLC15XA/vXn0nSZGByevmWpKUlyK3oBLsAq/JLQLn908Xg9dd2XodtU+brb48tvdFRCkJD3y42C0RcBVzV/um0L0lVEVGZdx7lyuuv7bwO26azrr+O0mRUDfQreF0BrMgpFzOzLqmjFIRHgcGSBkj6ADARmJ1zTmZmXUqHaDKKiA2SpgJ3A92A30XE4pzTak9l3+yVM6+/tvM6bJtOuf4UsVlTvZmZdUEdpcnIzMxy5oJgZmaAC4KZmSUuCFY2JG2bdw5mnZkLQol5o9Zykj4haQnwZHq9j6Qrck6r7EjaQ9Kn03QvSR/MO6dyIWlXSVdLujO9HiJpUt55FZsLQol4o9YmlwDjgNUAEfEP4OBcMyozkr4J3AL83xSqAG7LLaHyM4OsW/xu6fXTwOl5JdNeXBBKxxu1NoiI5fVCG3NJpHxNAQ4E3gSIiGeAD+eaUXnZJSJmAZsgu3aKTvgb7BAXpnUVEbFcdQel6nQ/qHayXNIngEhXsp9GOtKyZlsXEe/V/P4kdaeB8cJsi96WtDNpnUkaA7yRb0rF54JQOt6otd63gV+RjYpbDdxDtsdrzfegpHOAXpIOB74D/CnnnMrJ98mG0xkk6W9Ab+DofFMqPl+pXCKSdiHbqH2abHTXe4DvRsTqXBOzLkHSVsAk4DNkv7+7gd+GNwDNlo6qPka2/pZGxPqcUyo6FwTr8CR9FLgS2DUihkkaDhwZET/NObWyIqkXsHtElOV9RPIkqQdwCu+f95sL/N/OVhR8UrlEJH1U0v2Snkivh0v6Ud55lYnpwNnAeoCIWEg2Iq41k6QjgQXAXen1CEkeUbj5rgRGAVekx6gU61RcEErHG7XW2yYi5tWLbcglk/I1jexWta8DRMQCoH9+6ZSd/SLixIh4ID2+DuyXd1LF5oJQOt6otd4qSYN4v4fH0cBL+aZUdjZERKfrFVNCG9NvEABJA+mEvQTdy6h0vFFrvSlk489/XNKLwHPAv+WbUtl5QtLxQDdJg8l6uf13zjmVkzOAOZL+h+yk8h7A1/NNqfh8UrlE0h7FVcAngNdIG7WIeD7PvMpJGvZjq4hYk3cu5UbSNsC/U7eX0fkR8W6uiZURSVvzfi+jpyJiXc4pFZ0LQol5o9Zykr7TUDwiPPSHlYSkExqKR8S1pc6lPbnJqETqb9Rqrhj1Rq1Z+jQQ+xpZbw9rBklzaODK5Ig4NId0ylHNCeSvALPSdACdqiD4CKFEJJ3fQPhrEdG/1Ll0BpL+X0R8Mu88yoWkUWRNHdcDX62JR8T83JIqQ5Iej4iReefRXnyEUCIR8eP6MUljS59J+ZHU0CCA25c8kTJWs+GXtNZFoE069R60C0KJeKPWJmc0EOtb8iw6h069QWsvki4nW3cVki6riUfEafllVXwuCKXjjVorRcQX6sck/b88cilXktaQbdC2kfQmWfNRRIR3SpqnKj136qMrF4QS8Uat9STt1EC4W8kTKWMR4bujtUFEzKyZltQT6BYRb+eYUrtwQSgRb9TaZD7Z3m3hzSTc9NFGks4DdgeujIhHc06nLEj6OvC/gfWSLo6Ii/LOqZjcy6hEJD1HAxu1iBiYU0rWhRQ0GanguSewA9nNczrdMAztQdJ8sov73gL+OyJG5ZxSUfkIoUQiYkDeOZQrSVOAGyLi9fR6R+A4X8PRIsvqd5dMXSjfySuhMqWae5hI6nRNRh7crkQkTZH0oYLXO27pClzbzDdrigFARLwGfDO/dMpSD0l90xAWNdw80EyS/pSGCx8oabakPwFD8s6r2NxkVCKSFkTEiHqxTn2RS7FIWgjsU3N3L0ndgIURMTTfzMpHug/HVsB2ZE1FdwFjI2L3XBMrE5IOaSgeEQ+WOpf25Caj0tlKkupt1D6Qc07l4m5glqTfkO3Vfpt0oxdrnogYVjOdBmn7EvBlSecCt0TEktySKw+L8k6gFHyEUCKSLiS7IUnhRm15RPwgz7zKQbof8LeAw3j/ftS/9YnQtknDWWwHLI6IVXnn05FJWge8SCfvFOKCUCLeqFme0rmDH5DdU/mb6Z4IH4uIO3JOrSx0leZdFwTr8Aq67NaG6IR7Z+1J0s1k13OcEBHDJPUCHq5/Xssalm6M8z1gHbACWBIRne6Ohz6HUCLeqLVJZcH0NmQX9Pl+Ei0zKCKOlXQcQESsVc0Y7NYcDwJfBnoBuwF7SPpmRNyZb1rF5YJQOt6otVJBv++TgAuB9cDFQKe6SrSdvZeOCmo6NQwi29u1ZoiIOrfLlLQncBvQqQqCr0MokYhYnTZsXwAeI7ufbae7J2s7OxX4ODAAOC7nXMrNNLKeWf0k3QDcD/ww35TKV0QsAw7PO49i8zmEEuvsl763J0mPRcS+afqhiGhoSHHbAkk7A2PImiv/7p5FzZcGtJsEDCW7jgOAiDg5t6TagZuMSq9TX/reHtJVoUG6SpRsg9bprhItgUOAg8jWZQ/g1nzTKSvXAU8B44CfkN117slcM2oHPkIokYKN2sHAQ2QbtQMiYpdcEysDXeUq0fYk6QpgT+DGFDoWeDYipuSXVfmo6XYqaWFEDJfUA7i7s92T2kcIpVNzAvSXuWZRhgo3/JL6AjtGxBM5plSODgGGFVwpP5MucvVtkaxPz69LGgb8i+xC007FBaFE6m3UdgFWhw/PmiVd5X0i8CvgeGCDpAci4nv5ZlZWlpLd++Cf6XU/YGF+6ZSdq9Iouz8GZpNd4X1uvikVn5uM2pmkMcAFwKvA+WRtkbuQ9fA6ISI8Jk8TJC0DPkG2UetDtrfmwe1aQNKDwH7AvBTaD3gYeAcgIo7MKTXrQHyE0P5+DZxDdiOSB4DPRsTfJX2crD3XBaFpb0bEK5Kej4h3oXZsGWtC6i+/K5vvzR5CNjbPspInVYbSIICbiYiflDqX9uSC0P66R8Q9AJJ+EhF/B4iIp3yhaLN9PA2BvWd6FuArvJvnUuCciKjTPJR6uE1r6F7f1qCaHoGnk63TTskFof1tKpheW+89t9c1z155J1DG+tcvBgARUSWpfw75lKWI+CWApH+rme6MXBDa3z6S3iTbq+2VpuH9e9paEyLin03PZVvQ2G+sV8my6Dw69U6cC0I7i4hueedgXdqjaRC26YVBSZPIRj+1Zmjg4kig852Mdy8js05M0q5kVyS/x/sFoJLsbn1HRcS/8sqtnHSViyNdEKwsSNoDGBwR96VRO7tHhEeLbSZJnwJqbqO5OCIeyDOfcpSK637p5byIeCXPfNqDC4J1eJK+CUwGdoqIQeluX7+JiMNyTs26CElfIRt6fS7Z+b9PAmdExC155lVsLgjW4UlaAIwGHqm5jaGkRRGxd66JWZch6R/A4TVHBZJ6A/dFxD75ZlZcvh+ClYN1EfFezQtJ3enkvT2sw9mqXhPRajrh9tO9jKwcPCjpHLJuu4cD3wH+lHNO1rXcJelu6o4W+5cc82kXbjKyDk/SVmQ3J/kMWfvt3cBvPTiglZKkLwMHkv0GH4qITnc/CRcEKwuSPgB8NL1cGhHrG5vfzFrOBcE6PEljgZnA82R7Z/2AEyPiofyysq5E0hrqnrcSEBGxfU4ptQsXBOvw0n2oj4+Ipen1R4EbfT9qKxVJPwUOBX4WEX/OO5/20unOklun1KOmGABExNNk9wQ2K4mI+BEwARgn6X5JB+adU3vwEYJ1eJJ+R3a4fl0KfZXsSuWv55eVdSWS9i14OYDs/hLLI+LzOaXULlwQrMOTtDUwBTiI1MMDuCIifJMcKwlJcxqKR8SnSp1Le3JBMDMzwOcQrAxIek7S/9R/5J2XdR2Sfi7pQwWvd0wnmjsVHyFYhydpZ7KmogeA2kP0iFidW1LWpUh6vGYcrYLYYxGx75aWKUceusI6vJoNv6QNLgKWk26Stq45b5WGYN8655yKzgXBOjxJO6XJbpJ2JDtaICJezS8r62KuB+6XdA1Zj7eTyS6W7FTcZGQdnqTnyP4IVRCOiBiYU0rWBUkaD3ya7Hd4T0TcnXNKReeCYGbWBEkDgJci4t30uhewa0Q8n2tiReaCYB2epBMaikfEtaXOxbomSVXAJ2ruy5EGW/xbROzX+JLlxecQrBzU/NF9BZiVpgNwQbBS6V54k6aIeC8VhU7FBcE6vIg4FUDSQTXTZiW2UtKRETEbQNIEYFXOORWdm4ysbHTGft9WHiQNAm4A+pIdnVYDJ0TEslwTKzIXBOvwJF1O9kc4EbipJh4Rp+WWlHVJkrYj226uyTuX9uAmIysHVel5fq5ZWJclaVfg58BuEfFZSUOAAyLi6pxTKyofIVhZSN38di+8L4JZqUi6E7gG+PeI2EdSd+DxiNg759SKyoPbWYcn6QvAAuCu9HqEpNm5JmVdzS4RMQvYBBARG4CN+aZUfC4IVg7OA0YDrwNExAKym5SYlcrbaZDFAJA0Bngj35SKz+cQrBxsiIg3pMKRK3Bbp5XS94HZwCBJfwN6A0fnm1LxuSBYOXhC0vFkg9sNBk4D/jvnnKwLiYjHJB0CfIxsLKOlEbE+57SKzieVrcOTtA3w78BnyP4Y7wbOrxlXxqy9pdu4fgPYn+w3+CgwPSLW5ppYkbkgmJk1QdKfgKeB+1PoMGCviPhcflkVnwuCdXjpj3GzH2pEHJlDOtYFSaqKiMqmYuXOBcE6vNR2C9mh+nSyQ3ci4sHckrIuQdL30+SngZeBRen13mQnlh8AiIiLS59d8fmksnV4hRt+SW+7EFgJfTA9b5WmP1gQ36rgdafgIwTr8CR9iezoYCQwJiI+nXNK1sVIeiQi9m8qVu58hGDl4AtkV4hWA1/NORfrmtZIOg+4L73+NPBOfum0Dx8hmJk1QdL2wKlkN2sS2YCLl0fE63nmVWwuCNbhSZpDw72MDs0hHeui0h3SPkb2W/SFaWZ5kDSKbK/segqajCLCw2FbSUgaC8wEnif7LfYDToyIh/LLqvhcEKxsSHo8IkbmnYd1PZLmA8fXDL8u6aPAjRExKt/MisujnVo58d6L5aVH4b04IuJpoEeO+bQLHyFYhydpDVkx2IasZ4eAiIjtc03MugxJvyP7DV6XQl8FukfE1/PLqvhcEMzMmpAGt5sCHES2Q/IQcEVErMs1sSJzQbCyIOlI4OD0cm5E3JFnPtb1pF5Ge5FdE7M0It7LOaWic0GwDk/SBWT9v29IoeOA+RFxVn5ZWVci6QjgN8CzZEcIA4BvRcSduSZWZC4I1uFJWgiMiIhN6XU3shucD883M+sqJD0FfD4ilqXXg4A/R8TH882suNzLyMrFhwqmd8grCeuyXqkpBsn/AK/klUx78VhGVg7+E3g8XbEssnMJZ+ebknUxiyX9BZhF1tvoGODRNPAiEfHHPJMrFjcZWVmQ1If3x5F5JCL+lXNK1oVIuqaRtyMiTi5ZMu3IBcE6PEl7R8SigtdbA//hk8pmxeUmIysH10r6bkQ8JOlTwGW83+PIrN2lC9M201mODGq4IFg5+Cxwq6R/AdsDX4qIZ3LOybqWscAZeSfR3txkZGVB0geBW4HZEXFZ3vlY19JVBlZ0QbAOr2Aso25AL+BtPJaRlZCkxyJi37zzaG8uCGZmTZD0DlB4HULNAIud6uJIn0OwsiBpR2Aw0LMm1tluTmId2l55J1AKPkKwDk/SN4DvAhXAAmAM8LBvoWlWXB66wsrBd8kuSvtnRHwKGAmszDcls87HBcHKwbsR8S5kF6VFxFNkNzs3syLyOQQrB9WSPgTcBtwr6TVgRa4ZWZcjaQ9gcETcJ6kX2R3T1uSdVzH5HIKVFUmHkI12eldnvEGJdUySvglMBnaKiEGSBgO/iYjDck6tqNxkZB2epJ6SDpfUE3gP2JHsmgSzUpkCHAi8CZCulP9wrhm1AzcZWTm4CdiJ7I+x5qjgc8CxuWVkXc26iHhPEgCSupNdLNmpuCBYORhA1rPoX8BHUmxxfulYF/SgpHOAXpIOB74D/CnnnIrOTUZWDtan22deHhGb0vS6vJOyLuUssq7Oi4BvAX8BfpRrRu3ARwhWDi4HiIjzASTtQPYHaVYSEbFJ0vXAQxGxNO982ot7GVnZkLRtRLyddx7W9Ug6ErgQ+EBEDJA0AvhJRByZb2bF5SYj6/AkHSBpCfBker2PpCtyTsu6lmnAaOB1gIhYAPTPL5324YJg5eBSYBywGiAi/gEcnGdC1uVsiIg38k6ivbkgWFmIiOX1QhtzScS6qickHQ90kzRY0uXAf+edVLG5IFg5WC7pE0BI+oCk/0VqPjIrkVOBoWS9224kuybm9DwTag8+qWwdnqRdgF8Bnya7Mck9wHcjYnWuiZl1Mi4IZmZNkDSHBq5M7mz35HBBsA4rtdNu8QcaEaeVMB3rwiSNIjs6vR74ak08IubnllQ78IVp1pFVFUz/B1nXP7OSq9nwS1rb2YpAIR8hWFmQ9HhEjMw7D+vaJD0WEfvmnUd78RGClQvvuVhuJK0h+w1uI+lNsuajiIjt882suFwQzMyaEBEfzDuHUnCTkXVYBXtlANsA79S8RSfcO7PyIuk8YHfgyoh4NOd0isIFwcysCQU7Jyp47kl2O9d1EdEprpx3k5GZWdOW1e/UkDo6vLOlBcqRh64wM2taD0l9JW1TEOt0zSs+QjAza557ge0k9QTuAnbJOZ+i8xGCmVkTImJYRAyJiN2BfsCdwM6SzpU0JOf0isYnlc3MWiENZ7EdsDgiVuWdTzH4CMHMrAmStpH0Y0nT0+vBQJ+IeLCzFANwQTAza45ryO6FcEB6XQ38NL902ocLgplZ0wZFxP8G1gNExFqyaxE6FRcEM7OmvSepF6mrqaRBZEcMnYq7nZqZNW0aWVfTfpJuAA4ETso1o3bgXkZmZs0gaWdgDFlT0d8708nkGj5CMDNrnkOAg8iajXoAt+abTvH5CMHMrAmSrgD2BG5MoWOBZyNiSn5ZFZ8LgplZEyQtBoZF2mBK2gpYFBFD882suNzLyMysaUvJ7n1Qox+wMKdc2o2PEMzMmiDpQWA/YF4K7Qc8TLppU0QcmVNqReWTymZmTTs37wRKwUcIZmZbIGlPYNeI+Fu9+CeBFRHxbD6ZtQ+fQzAz27JLgTUNxNem9zoVFwQzsy3rHxGbnTyOiCqgf+nTaV8uCGZmW9azkfd6lSyLEnFBMDPbskclfbN+UNIkYH4O+bQrn1Q2M9sCSbuSDVHxHu8XgErgA8BREfGvvHJrDy4IZmZNkPQpYFh6uTgiHsgzn/bigmBmZoDPIZiZWeKCYGZmgAuCmZklLghmZgbA/wd9oB9EzoAxhQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "education = male_salary['educationType'].values\n",
+ "male_salaries = male_salary['salary'].values\n",
+ "female_salaries = female_salary['salary'].values\n",
+ "\n",
+ "index = np.arange(len(education))\n",
+ "\n",
+ "bw = 0.4\n",
+ "plt.bar(index-bw/2, male_salaries, bw, color='blue', label='Средняя зарплата мужчин')\n",
+ "plt.bar(index+bw/2, female_salaries, bw, color='red', label='Средняя зарплата женщин')\n",
+ "plt.xticks(index, education, rotation=90)\n",
+ "plt.legend()\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3c8325c2",
+ "metadata": {},
+ "source": [
+ "### Построение графика распределения заработной платы для мужчин\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "db7b7ce2",
+ "metadata": {},
+ "source": [
+ "Для начала отсортируем датафрейм. Оставим строки в которых у мужчин есть высшее образование"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 204,
+ "id": "a3838d05",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " salary \n",
+ " educationType \n",
+ " jobTitle \n",
+ " qualification \n",
+ " gender \n",
+ " dateModify \n",
+ " skills \n",
+ " otherInfo \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 60000 \n",
+ " Высшее \n",
+ " Специалист пресс-службы \n",
+ " Магистр \n",
+ " Мужской \n",
+ " 2021-04-01 \n",
+ " <p>Аналитическое мышление, <span cla... \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 85000 \n",
+ " Высшее \n",
+ " менеджер проектов \n",
+ " NaN \n",
+ " Мужской \n",
+ " 2021-04-01 \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 100000 \n",
+ " Высшее \n",
+ " Начальник участка \n",
+ " NaN \n",
+ " Мужской \n",
+ " 2021-04-01 \n",
+ " <p>Коммуникабельность </p> \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 100000 \n",
+ " Высшее \n",
+ " Технический директор \n",
+ " Экономист \n",
+ " Мужской \n",
+ " 2021-04-01 \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 50000 \n",
+ " Высшее \n",
+ " Монтажник электрических подьемников \n",
+ " NaN \n",
+ " Мужской \n",
+ " 2021-04-01 \n",
+ " <p>Знание программного обеспечения от ведущих ... \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 32654 \n",
+ " 50000 \n",
+ " Высшее \n",
+ " экономист 8 разряда в подразделение \"Сектор по... \n",
+ " инженер-экономист \n",
+ " Мужской \n",
+ " 2021-01-26 \n",
+ " <p>инициативность;</p><p>внимательность;</p><p... \n",
+ " <p>Знание-Бухгалтерский учет, управленческий у... \n",
+ " \n",
+ " \n",
+ " 32659 \n",
+ " 45000 \n",
+ " Высшее \n",
+ " NaN \n",
+ " Инженер по организации и управлением на морско... \n",
+ " Мужской \n",
+ " 2020-06-26 \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 32663 \n",
+ " 40000 \n",
+ " Высшее \n",
+ " Слесарь по ремонту подвижного состава 2-3 разряда \n",
+ " Техник \n",
+ " Мужской \n",
+ " 2021-11-17 \n",
+ " <p>Командообразование, лидерство, опыт работы ... \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 32668 \n",
+ " 40000 \n",
+ " Высшее \n",
+ " заместитель начальника юридического отдела \n",
+ " юрист \n",
+ " Мужской \n",
+ " 2021-03-24 \n",
+ " <p>Высокая работоспособность, нацеленность на ... \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 32681 \n",
+ " 35000 \n",
+ " Высшее \n",
+ " NaN \n",
+ " NaN \n",
+ " Мужской \n",
+ " 2020-04-21 \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
3095 rows × 8 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " salary educationType \\\n",
+ "0 60000 Высшее \n",
+ "1 85000 Высшее \n",
+ "10 100000 Высшее \n",
+ "16 100000 Высшее \n",
+ "28 50000 Высшее \n",
+ "... ... ... \n",
+ "32654 50000 Высшее \n",
+ "32659 45000 Высшее \n",
+ "32663 40000 Высшее \n",
+ "32668 40000 Высшее \n",
+ "32681 35000 Высшее \n",
+ "\n",
+ " jobTitle \\\n",
+ "0 Специалист пресс-службы \n",
+ "1 менеджер проектов \n",
+ "10 Начальник участка \n",
+ "16 Технический директор \n",
+ "28 Монтажник электрических подьемников \n",
+ "... ... \n",
+ "32654 экономист 8 разряда в подразделение \"Сектор по... \n",
+ "32659 NaN \n",
+ "32663 Слесарь по ремонту подвижного состава 2-3 разряда \n",
+ "32668 заместитель начальника юридического отдела \n",
+ "32681 NaN \n",
+ "\n",
+ " qualification gender dateModify \\\n",
+ "0 Магистр Мужской 2021-04-01 \n",
+ "1 NaN Мужской 2021-04-01 \n",
+ "10 NaN Мужской 2021-04-01 \n",
+ "16 Экономист Мужской 2021-04-01 \n",
+ "28 NaN Мужской 2021-04-01 \n",
+ "... ... ... ... \n",
+ "32654 инженер-экономист Мужской 2021-01-26 \n",
+ "32659 Инженер по организации и управлением на морско... Мужской 2020-06-26 \n",
+ "32663 Техник Мужской 2021-11-17 \n",
+ "32668 юрист Мужской 2021-03-24 \n",
+ "32681 NaN Мужской 2020-04-21 \n",
+ "\n",
+ " skills \\\n",
+ "0 Аналитическое мышление, Коммуникабельность
\n",
+ "16 NaN \n",
+ "28 Знание программного обеспечения от ведущих ... \n",
+ "... ... \n",
+ "32654
инициативность;
внимательность;
Командообразование, лидерство, опыт работы ... \n",
+ "32668 Высокая работоспособность, нацеленность на ... \n",
+ "32681 NaN \n",
+ "\n",
+ " otherInfo \n",
+ "0 NaN \n",
+ "1 NaN \n",
+ "10 NaN \n",
+ "16 NaN \n",
+ "28 NaN \n",
+ "... ... \n",
+ "32654
Знание-Бухгалтерский учет, управленческий у... \n",
+ "32659 NaN \n",
+ "32663 NaN \n",
+ "32668 NaN \n",
+ "32681 NaN \n",
+ "\n",
+ "[3095 rows x 8 columns]"
+ ]
+ },
+ "execution_count": 204,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "male_height = data.query('gender == \"Мужской\" and educationType == \"Высшее\"')\n",
+ "male_height"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ca279cab",
+ "metadata": {},
+ "source": [
+ "### Распределение зарплат для мужчин с высшим образованием\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 205,
+ "id": "032f6af5",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAFNCAYAAACwk0NsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAvlElEQVR4nO3de5wkVX338c9XQEC5B9wgoKCiCYLXlWjMZYkmoCAQH1EiKhANxnhNjApqEk1EiVGTqPFCAEFRccULCN4QXX18VFAERUAC6gorNxG5rFEQ+D1/1BnpHWZme3emp2t2P+/Xa15Tfarq1Ok6XdW/PudUVaoKSZIk9c89xl0ASZIkTc1ATZIkqacM1CRJknrKQE2SJKmnDNQkSZJ6ykBNWs8l2WjcZZDU8XjUZAZq0nomyQZJjkzynSTXACuSbDLmMt0ryRFJNkry+0l+f5zlkeZLkk2THJPkkiTXAd8ed5nULwZqPZZkeZJfJlmZ5Nok70uy2bjLpQXvv4A/Bf68qn67qhZV1a/GWaCq+l/g8cC1wHuAn42zPNI8+jhwP2CvqrpPVe0x7gKpX+INb/sryXLgeVX1hSQ7AJ8DzqiqI8dbMi1USXYBvgE8qKpuGXd5pPVZkiXAO4BHVNUd4y2N+soWtQWiqn4CfAbYHSDJ4a2p/JYkP0zy/MHlkxyQ5IIkNyf5QZJ9WvqyJL9qrXQrW4vd8oH1lic5KsnFSX7eWvE2GZi/X8v3xiRfS/KwSds9OcltA3mvGJi3cZK3JLmitRC+J8mmA/N3TlIDZbsjyfPavHu07rofJPlZkqVJtpm03oaTyvG6Nr1kUjme3pZ/3kDaX7b9+fMkn0ty/6nqYYoyrkzy64lttWX+KsnlSW5IcnqS+06T1wOTXNrq8NokbxiYt2+S81v9XTkp/4kyHJHkqiRXJ3n5wPw9k3y91dHVSd6Z5J5t9mOAq4HTk9yU5KIk+w+su2WS9yf5aZIfJ3lt2/f3HXi/t7X3PPH6Dyfv45bXV5McNlB/r215Xte2seVU9dfKX4P7Y1K+h7XPxmAd3JnuS2+6ZSrJg9q8wzPNsdP22cp0x8jg+oe0+Y9N97m/MV3X8RKmkOQVST42Ke0dSf5jmuWXt31+z4G0cyf2S5KDkpw3aZ2XJ/lkm/6PJJ9Mco+B/J7Ypp/aPmfbtte/2ReTXyc5cdLn8NOT6mZZVj1unpiB88cU7+uhSc5Kdyxcm+TV0yx3Yu46b9yQ5LiBbb4uyclTrLPKtpPslOTjbT/+LMk7W/phSb46sNwbkpw48PrkJK9t0zOeK1peleRvB5Z58mo+r9N+9oE96VqPv5HuePxmBrr92/5+U/ss3JTktLTzXpv/0STXtHlfSfLQgXlvTnJ9+5x/I8nuA/P2T3fs39i28bsD8wZ7cn6S5EUD8w7P9MfO6s4Bk+vhlW2/TXxOhznHnzaw/tbpjtOvso4zUFsgkuwEPBk4vyVdB+wHbAEcDvx7kke1ZfcE3g+8AtgK+CNg+UB2L6qqzapqM+ApU2zuEGBv4IHAg4GJk9ijgBOA5wO/BbyX7gt/48GiAke3vJ80Kd9/bfk9AngQsAPwjwPzJz6PW7b1/+/AvJcABwJ/DNwX+DldF94aSTdQ91/ogpWJtAOBVwNPBbZr2/3warLaamAffmQgrz8B3gQ8Hdge+DFwyjR5XEdXp1sAjwWel2Si2+MXwHPo6m9f4AWtnIP2AnYF/gw4cuKEB9wB/C2wLfA44AnA37R59wIeDpzV3uuLgQ8meUib/w5gS+ABdPv6OcDhVXXVwPt9I/CRiddVNVhP0zms/e3V8t4MeOc0y74Z+Mlq8vv6wPY3A66aNP8ewNcG5g+a9tipqq3a8n89aRsfTNeqfSbwBmAb4O+BjyXZborynQzsk2QrgBZ0PAP4wAzv6XrggLb8HnT7aMLpwC6DX6jAswby+zu6ev+PwQyTPLal7VdV17fkYohzf7og9GGrWWym9TcHvgB8lu6YfRBw9gyrvLnt+93oPvP7rMG2NgDOoDvedqY7t0x33A2b593OFc3lwKEDr58HXDJDVocx/Wf/XnTH2dvpzqlvA85M8lsD6z8H+Eu6fXh7W3bCZ+jOAfehG9v2wYF5x9N1qW4FfBF4fXtfD6Y7v72M7hzwaeBTGfiRADyl1cUzgbcn2aKlT3vsrIkkW9Od028cSB7mHP+AJNu36WcDP1zTbS9EBmr998kkNwJfBb5M9yVJVZ1ZVT+ozpeBzwN/2NZ5LnBCVZ1VVXdW1U+q6vtrsM13VtWVVXUDcDTwFy39r4D3VtU5VXVHVZ0E3EoXZEzYFLhtcoZJ0tb/26q6oXW7vRE4eGCxewJ3TtMF8HzgNVW1oqpuBV4HPC0DrWhDej5wDvA/k9LeVFWXVNXtrVyPyDStaqtxCN2+/3Yr51HA45LsPHnBqrplog7pAtxraQFHVS2rqgtb/X2X7sT6x5OyeH1V/aKqLgTeR6unqjqvqr5RVbdX1XK6gHpw3WuBY6rqtqr6It0X3F+0L7tnAEe1si0H3kp3QpytQ4C3VdUPq2pl2y8HT66/JPvRnZe+MMvt3ZMpPoew2mNnJs8CPl1Vn271chbwLbpge/I2rga+AhzUkvYBrq+q8yYvO+A4umMXumPl+IH8bqX7QfAs6Fqq6AKSM9r8O+n28Z8NtPY8kC7A+8uqumxgO1fQjVGcVjte38yqP6TW1H7ANVX11qr6VftMnTPEehvQHQ9rMk5xT7ov91e0Y+JXVTXblpapzhXQHT/LkzwuyX2A+wPnzpDP6j7736yqD7Tj9cPA91n1B/QHqup7VfUL4B+Ap7djlao6oe3XiXPiwyda66rq0jb2My2fiYsUngGc2b4ffg28he68PdUFPBsCN9OOpVkcO5O9hu5H/00DacOc40+iC3qhC2BPWottLzgGav13YPuVf/+q+puq+iVAkie15uwbWiD3ZLoWFICdgB/MYptXDkz/mO4ECN0J6eWtufzGtt2dBuYD/Dbw0yny3I7u1+N5A+t+tqVP2IbuV9RU7g98YmDdS+haEBYNLHP9wPynT86g/cJ/Jd3JbnLe/zmw7g10J7cdpinLTO5Lt88AaCfmn02XV5L7JbmJ7lf6V4FbWvrvJflSum6cm+haeLadtPqU9ZTkwUnOaF0iN9MFnhPr3gpc2b7YB9fdoS1zz8HyD8wb6r1P+mwMBvCr7Jc2vSGr1t896FojXznk9mYy7WdpNcfOTO4PHDTpPf4BXcvpVE6iBVas2vo1ne8AW7fWzT+lC7Im5/fMFkQ9G1javtAmPJCuNfQFrUxvo9vPk4OyF9Edxze19zCVp9N9br84xby3D7z/T87wftb0PPT3Lc8rga8D3xwsT9vm9em6Uh8wxbZ+3H5ozdoM54oJx9G1pB1G13sxk5k++7dOmjcxf/CYm3ycbwRsm+7q7WNaV+HN3NVr8pvPcpJ30bXOPxP40lTlaeeCKydt85Mtz88Db6x2sdEQx85M54CJMt2P7vP1b5NmDXOO/wBwSJLfa2W+dnL+6yIDtQWodTV+jO6X0KKq2oqu+Xril9OVdCfttbXTwPT9uKtb6Uq6bs2tBv7u1X4FTnQV7E73hTPZ9cAvgYcOrLvlpG6pB3P3X68TrgSeNGnbm1Q3dm/CthPzgKVT5PEKui+3ySfGK4HnT8p706r62jRlmclVdCccAJLcm65LY8quvKq6oqq2pDtJ/jF3tah8iO6Leqc2/z3cVb8Tpqund9P9Kt+1qrag69adWPcKYKe0sUwD6/6Ero5+PVj+gXnDuGpwH9JdtPCbeVPkezurnmgPAy6tqsH11taUn6Uhjp2ZXEnXujH4Obl3VR0zzfKfBB6WbmzQfqzaLTWd99G1nJ1BVxe/0fbLbXQtGM9kIPBrwdt76IYp7NvWPYauJe85A13qVNUZVfWAdvxtNUUZJrr8XjVNGV8yUMcHzvBe1vQ89JaW5+Z0PxheMTBvaZt3X7rP8Bun2Nb91qKFfTrTnSsmfIbuKuVDWX0APtNn/4pJ8ybmDx5zk4/zX9Mdq8+k6yp/Il2AvnNb5jef5ar6G7ofyP8GfGKq8rTPzk6TtnlgO3fcD3hpaz0c5tiZ6Rww4Q103dyTL2Ya5hz/M+B7dL0Ex02R9zrJQG1huiewMV3L1e1JnkQ3TmnC8cDhSZ6QboDmDkl+Zw3yf2GSHdMN5Hw1d43B+m/gr1trT5LcO92g983b/MOBa+i6g1bRfrX9N92YhvsAtHLt3aZ3Al7K9L/Q3wMcPdEdmWS7JAeswXvavJXv6GnyPqp1J5FuQP1BUyw3jA/R7ftHtBPbG4FzWjfiKgb2MXR1ugFdMDtR3huq6lfpxhw+c4pt/UO6+489tL23jwysezOwstX7CwbWOYfuF/Yr092zbAldN8sp1XU5L6Xbz5u3ff13dOOtZuvDwN8m2SXdLWYmxrkNtoC8hq5baFaSPJ4ugDhtitmrO3ZmcjLwlCR7t9aMTdINoN5xqoVbK8SpdJ+Jc6vqiiG28SG6loRjp5n/frrxTbdP6tp7Ht3YsxNaN+f1dGPsfka3T9/bvpCH8Wy68X3fHXL56ZwB/HaSl6W7kGjz1hKyOnfQvZe7jf2rqtuAldz9u+tcurFkx7Tz0ibtc7A2ZjpXTJTjDroxtydXN0RkJjN99j8NPDjJM9NdNPIMujF6Zwys/6wkuyW5F/DPwKlt+5vTtcj9jC4YWyV4TbJ7+0EWus/8xLllKbBv+37YCHh5y2eqH6YTw1C2Y3bHzoQHAb9HF2hNNuw5/t+BC+h6ZNYLBmoLUPsl8hK6A+7ndF/ipw/MP5c20JNuDMCXufuvtpl8iK7J+4ft7w0t32/RjZ15Z9vu5bTxAumuinsvsAtwS5KVdL8675vkPS3fV7V1vtGa1b8ATAxi/xywrJV5Kv/Z3uPnk9xC90ttmJP+hC2At1fV3brDquoTdCfdU1q5vsfdL4QYSlWdTddd8jG6L44Hsuo4vEF7AOe39/M1upP2xK/zvwH+uc37R6ZuIfwy3f48m6414vMt/e/pPhO30AXHv7nYoX057E/XZXE93WDdZ9ddYxhfTBfI/ZCuK/ZDdGNJZuuE9t6+AvwI+FXb1qAzJo2lWmNJdqPrIvz7qcZDre7YmUlVXUnXgvFqui+rK+laXmY6j55EV8+ra3WZ2MbNVfUXM+yHD9C1Wg+2pm1H1wL2/Kq732+pqk6k+yJ+/uR509ia6bv8htb29Z/S/RC4BriMbkD9dF7ZzhvX0O3Tfx2Y9+dJViT5CfAo2gVOA9u6o23nQXStVCvoxmJNeExbfwVd/R808PrPJ5Vj2nPFpG2+r6reNNMyzbSf/baNp9AFSz+j+zwNXvhBW/dEuv2ySSs/dEH7j+lawi7m7q1Xb6L7jP8MeBp3jWG9lK4r/h1054Cn0F08MDim81OtLr5Ld5+3M2dz7AxYBLy2jY2bbKhzfHVjpA+r9eh2Jt5HTavIwL3b1nC9w4Cdq+p1k9J3BN5QVYfNURHXe+kuTPgRsNFcjcnRaLTxON8Hfruqbp6D/Dalu/LuUbMNatV/SZbRtdqtN918ujtb1DRXfkHX3TbZ7XSD86X1Sut2+ju6buVZB2nNC+iuEjRIk9YTczXwUuu5qvroNOnX0H1ZSeuNdhHJtXRdU0PfD2w1eS6nG2904FzkJ2lhsOtTkiSpp+z6lCRJ6ikDNUmSpJ5aZ8eobbvttrXzzjuPdBu/+MUvuPe97z3SbWjNWS/9Y530j3XST9ZL/8xXnZx33nnXV9Xd7h+4zgZqO++8M9/61t3uuzqnli1bxpIlS0a6Da0566V/rJP+sU76yXrpn/mqkyRTPgnDrk9JkqSeMlCTJEnqKQM1SZKknjJQkyRJ6ikDNUmSpJ4yUJMkSeopAzVJkqSeMlCTJEnqKQM1SZKknjJQkyRJ6ikDNUmSpJ5aZ5/1uRDtfOSZc57n8mP2nfM8JUnS/LBFTZIkqacM1CRJknrKQE2SJKmnDNQkSZJ6ykBNkiSppwzUJEmSespATZIkqacM1CRJknrKQE2SJKmnDNQkSZJ6ykBNkiSppwzUJEmSespATZIkqacM1CRJknrKQE2SJKmnDNQkSZJ6ykBNkiSpp0YWqCU5Icl1Sb43kPZvSb6f5LtJPpFkq4F5RyW5PMmlSfYeSH90kgvbvLcnyajKLEmS1CejbFE7EdhnUtpZwO5V9TDgf4CjAJLsBhwMPLSt864kG7R13g0cAeza/ibnKUmStE4aWaBWVV8BbpiU9vmqur29/AawY5s+ADilqm6tqh8BlwN7Jtke2KKqvl5VBbwfOHBUZZYkSeqTDce47b8EPtKmd6AL3CasaGm/btOT06eU5Ai61jcWLVrEsmXL5rC4d7dy5co53cbL97h99QutoVHvgz6a63rR7Fkn/WOd9JP10j/jrpOxBGpJXgPcDnxwImmKxWqG9ClV1bHAsQCLFy+uJUuWzK6gq7Fs2TLmchuHHXnmnOU1YfkhS+Y8z76b63rR7Fkn/WOd9JP10j/jrpN5D9SSHArsBzyhdWdC11K208BiOwJXtfQdp0iXJEla583r7TmS7AO8Cti/qv53YNbpwMFJNk6yC91FA+dW1dXALUke2672fA5w2nyWWZIkaVxG1qKW5MPAEmDbJCuAf6K7ynNj4Kx2l41vVNVfV9VFSZYCF9N1ib6wqu5oWb2A7grSTYHPtD9JkqR13sgCtar6iymSj59h+aOBo6dI/xaw+xwWTZIkaUHwyQSSJEk9ZaAmSZLUUwZqkiRJPWWgJkmS1FMGapIkST1loCZJktRTBmqSJEk9ZaAmSZLUUwZqkiRJPWWgJkmS1FMGapIkST1loCZJktRTBmqSJEk9ZaAmSZLUUwZqkiRJPWWgJkmS1FMGapIkST1loCZJktRTBmqSJEk9ZaAmSZLUUwZqkiRJPWWgJkmS1FMGapIkST1loCZJktRTBmqSJEk9ZaAmSZLUUwZqkiRJPWWgJkmS1FMGapIkST1loCZJktRTIwvUkpyQ5Lok3xtI2ybJWUkua/+3Hph3VJLLk1yaZO+B9EcnubDNe3uSjKrMkiRJfTLKFrUTgX0mpR0JnF1VuwJnt9ck2Q04GHhoW+ddSTZo67wbOALYtf1NzlOSJGmdNLJAraq+AtwwKfkA4KQ2fRJw4ED6KVV1a1X9CLgc2DPJ9sAWVfX1qirg/QPrSJIkrdPme4zaoqq6GqD9v09L3wG4cmC5FS1thzY9OV2SJGmdt+G4C9BMNe6sZkifOpPkCLpuUhYtWsSyZcvmpHDTWbly5Zxu4+V73D5neU0Y9T7oo7muF82eddI/1kk/WS/9M+46me9A7dok21fV1a1b87qWvgLYaWC5HYGrWvqOU6RPqaqOBY4FWLx4cS1ZsmQOi353y5YtYy63cdiRZ85ZXhOWH7JkzvPsu7muF82eddI/1kk/WS/9M+46me+uz9OBQ9v0ocBpA+kHJ9k4yS50Fw2c27pHb0ny2Ha153MG1pEkSVqnjaxFLcmHgSXAtklWAP8EHAMsTfJc4ArgIICquijJUuBi4HbghVV1R8vqBXRXkG4KfKb9SZIkrfNGFqhV1V9MM+sJ0yx/NHD0FOnfAnafw6JJkiQtCD6ZQJIkqacM1CRJknrKQE2SJKmnDNQkSZJ6ykBNkiSppwzUJEmSemq1t+dIcgvdY5s2BX5J91inqqotRlw2SZKk9dpqA7Wq2hwgyflV9cjRF0mSJEmwZl2f0z4MXZIkSXNvmK7PR7XJTZM8kq7rk6r69igLJkmStL4b5hFSb23/rwHe1qYL+JORlEiSJEnAcGPU9pqPgkiSJGlVw3R9/t1U6VX1tqnSJUmSNDeG6fr8R2A58InRFkWSJEmDhgnUHgAcBTwB+Oeq+sJoiyRJkiQY4vYcVXVDVb0COBg4KMlnkzxm9EWTJElavw0zRu1T3HUPtQD3A74BbDDCckmSJK33hun6fMvISyFJkqS7Geb2HF+ej4JIkiRpVWvyUPbfJOFD2SVJkkZumIsJNq+qLVpg9oOJ1/NQNkmSpPXamjyUHYYb0yZJkqQ5MEzX5zva5MOBc0ZbHEmSJE0YpoXsW8CdwMeBZSMtjSRJkn5jmEDtlKq6dTAhyR9U1VdHVCZJkiQx3Bi1zyfZDiDJtklOBF490lJJkiRpqEDtNcBnkxwFnA2cWVVPHm2xJEmSNMwNb7+a5GnAGXQPZf/o6IslSZKkYa76vJDuhrf3Ak5O8hqAqnrYiMsmSZK0XhvmYoL9gI2AdwBnAv820hJJkiQJGC5Q+zmwFNgC2BL436r66UhLJUmSpKEuJvgC8Paq+n3gE8DZSV44m40m+dskFyX5XpIPJ9kkyTZJzkpyWfu/9cDyRyW5PMmlSfaezbYlSZIWimECtb+qqk8DVNXHgccB91vbDSbZAXgJsLiqdgc2AA4GjgTOrqpd6a4uPbItv1ub/1BgH+BdSTZY2+1LkiQtFMMEan842LpVVb+oqlfNcrsbApsm2ZDuIoWrgAOAk9r8k4AD2/QBtJvuVtWPgMuBPWe5fUmSpN5LVc28QPIGuhatbwMnAJ+r1a20uo0mLwWOBn4JfL6qDklyY1VtNbDMz6tq6yTvBL5RVSe39OOBz1TVqVPkewRwBMCiRYsefcopp8ymmKu1cuVKNttssznL78Kf3DRneY3KHjtsOe4irNZc14tmzzrpH+ukn6yX/pmvOtlrr73Oq6rFk9OHuY/aa5P8A/BnwOHAO5MsBY6vqh+saUFa69wBwC7AjcBHkzxrplWmKtY0ZT0WOBZg8eLFtWTJkjUt3hpZtmwZc7mNw448c87yGpXlhywZdxFWa67rRbNnnfSPddJP1kv/jLtOhun6pLWgXdP+bge2Bk5N8ua12OYTgR9V1U+r6td0D3v/feDaJNsDtP/XteVXADsNrL8jXVepJEnSOm21gVqSlyQ5D3gz8P+AParqBcCjgf+zFtu8AnhsknslCfAE4BLgdODQtsyhwGlt+nTg4CQbJ9kF2BU4dy22K0mStKAMcx+1bYGnVtWPBxOr6s4k+63pBqvqnCSn0o15ux04n667cjNgaZLn0gVzB7XlL2pdrRe35V9YVXes6XYlSZIWmmECteMAkqxyS46quqKqLlmbjVbVPwH/NCn5VrrWtamWP5ru4gNJkqT1xjCB2nLgMrpACrrB/QX4rE9JkqQRGiZQeyGwP12wdkJVXTDSEkmSJAkY4mKCqnp3VT0JeC/w0iT9v4eEJEnSOmC1LWrtysy9gecAGwH/NepCSZIkabiuzyvo7mX2Abr7qG2S5KntuZ+SJEkakWECtbPpLh54zEBa0d2oVpIkSSMyzCOkDpuHckiSJGmSoR4hJUmSpPlnoCZJktRTBmqSJEk9NcxD2bdM8u9JvtX+3ppky/konCRJ0vpsmBa1E4Cbgae3v5uB942yUJIkSRru9hwPrKr/M/D69UkuGFF5JEmS1AzTovbLJH8w8SLJ44Ffjq5IkiRJguFa1F4AnNTGpQW4AThslIWSJEnScDe8vQB4eJIt2uubR10oSZIkDXfV525JXgRsCvxbklOTPHL0RZMkSVq/DTNG7UPAQ4BzgHOBpcBxoyyUJEmShgvU7lFVLwZuq6rjq2rpkOtJkiRpFoa5mGCzJE8FNkzy53RB2hajLZYkSZKGCdS+DDyl/d+/pX1lZCWSJEkSMFyg9o6q+vbISyJJkqRVDDPWzAsHJEmSxmCYFrUNk2xNd7Pb36iqG0ZTJEmSJMFwgdpDgPNYNVAr4AEjKZEkSZKA4QK1i6vKG9xKkiTNM++HJkmS1FPDBGqPG3kpJEmSdDfDBGqfSrLVxIskWyf53OiKJEmSJBguUNuuqm6ceFFVPwfuM7ISSZIkCRguULsjyf0mXiS5P91Vn2styVZJTk3y/SSXJHlckm2SnJXksvZ/64Hlj0pyeZJLk+w9m21LkiQtFMMEaq8BvprkA0k+QPf4qKNmud3/BD5bVb8DPBy4BDgSOLuqdgXObq9JshtwMPBQYB/gXUk2mOX2JUmSem+1gVpVfRZ4FPARYCnw6Kpa6zFqSbYA/gg4vuV/W+taPQA4qS12EnBgmz4AOKWqbq2qHwGXA3uu7fYlSZIWitUGaklC15L1qKr6FHCvJLMJlB4A/BR4X5LzkxyX5N7Aoqq6GqD9nxgHtwNw5cD6K1qaJEnSOi1VMw83S/Ju4E7gT6rqd9vYsc9X1WPWaoPJYuAbwOOr6pwk/wncDLy4qrYaWO7nVbV1kv8Cvl5VJ7f044FPV9XHpsj7COAIgEWLFj36lFNOWZsiDm3lypVsttlmc5bfhT+5ac7yGpU9dthy3EVYrbmuF82eddI/1kk/WS/9M191stdee51XVYsnpw/zZILfq6pHJTkfuqs+k9xzFmVZAayoqnPa61PpxqNdm2T7qro6yfbAdQPL7zSw/o7AVVNlXFXHAscCLF68uJYsWTKLYq7esmXLmMttHHbkmXOW16gsP2TJuIuwWnNdL5o966R/rJN+sl76Z9x1MszFBL9ug/cLIMl2dC1sa6WqrgGuTPKQlvQE4GLgdODQlnYocFqbPh04OMnGSXYBdgXOXdvtS5IkLRTDtKi9HfgEcJ8kRwNPA147y+2+GPhga5n7IXA4XdC4NMlzgSuAgwCq6qIkS+mCuduBF1bVHbPcviRJUu+tNlCrqg8mOY+u5SvAgVV1yWw2WlUXAHfrh23bmGr5o4GjZ7NNSZKkhWa1gVqSbejGi314MK2qbhhlwSRJktZ3w3R9nkc3Pi3A9sDV7fUDRlguSZKk9d4wXZ+7TEwnOb+qHjnaIkmSJAmGu+oTgDbwfza35ZAkSdIaGGaM2qfa5O8CHxptcSRJkjRhmDFqb6G7b9qK9qxNSZIkzYNhArULJybaFaAAeNWnJEnSaA0TqF0PXAv8ku7KT/CqT0mSpJEb5mKCI+iet/lWYNeq2qWqDNIkSZJGbLWBWlUdB/wBsDHwtSSHjLxUkiRJWn2gluSpwL7AcuDdwKuSfGfE5ZIkSVrvDTNG7SmTXp83ioJIkiRpVcM8meDw+SiIJEmSVjXMDW9Pnyq9qvaf++JIkiRpwjBdn78LPG/UBZEkSdKqhgnUbqmqL4+8JJIkSVrFMPdRe3iSG5Nck+TbSd6RZNuRl0ySJGk9N8x91DYAtgEeCDwDuAY4acTlkiRJWu8N06JGVd1ZVb+oqsuq6mjgsyMulyRJ0npvmDFqJNkf+KP28stV9Y7RFUmSJEkw3JMJ3gS8FLi4/b2kpUmSJGmEhmlR2xd4RFXdCZDkJOB84KhRFkySJGl9N9QYNWCrgektR1AOSZIkTTJMi9qbgPOTfAkI3Vi1V4+0VJIkSRrqWZ8fTrIMeAxdoPaqqrpm1AWTJEla303b9Zlk34npqrq6qk6vqtOAXyTxqk9JkqQRm2mM2n8mee5gQpJnAt8FrhtpqSRJkjRj1+cfAmcm2QE4BXgXcBvwxKr6wXwUTpIkaX02bYtaVV0N/DFdwPZd4LiqerJBmiRJ0vyY8fYcVXUL8CRgKfDMJJvMS6kkSZI0fddnkluAmngJ3Bu4IckdQFXVFvNQPkmSpPXWTF2fm1fVFu1v86q6R1XdayJ9thtOskGS85Oc0V5vk+SsJJe1/1sPLHtUksuTXJpk79luW5IkaSEY9skEo/BS4JKB10cCZ1fVrsDZ7TVJdgMOBh4K7AO8K8kG81xWSZKkeTeWQC3JjnTPED1uIPkA4KQ2fRJw4ED6KVV1a1X9CLgc2HOeiipJkjQ242pR+w/glcCdA2mL2pWmE1ec3qel7wBcObDcipYmSZK0ThvmWZ9zKsl+wHVVdV6SJcOsMkVaTZFGkiOAIwAWLVrEsmXL1rKUw1m5cuWcbuPle9w+Z3mNyqj36VyY63rR7Fkn/WOd9JP10j/jrpN5D9SAxwP7J3kysAmwRZKTgWuTbF9VVyfZnruefrAC2Glg/R2Bq6bKuKqOBY4FWLx4cS1ZsmREb6GzbNky5nIbhx155pzlNSrLD1ky7iKs1lzXi2bPOukf66SfrJf+GXedzHvXZ1UdVVU7VtXOdBcJfLGqngWcDhzaFjsUOK1Nnw4cnGTjJLsAuwLnznOxJUmS5t04WtSmcwywtD1f9ArgIICquijJUuBi4HbghVV1x/iKKUmSND/GGqhV1TJgWZv+GfCEaZY7Gjh63gomSZLUA+O8j5okSZJmYKAmSZLUU30ao7bgXPiTmxbElZqSJGlhskVNkiSppwzUJEmSespATZIkqacM1CRJknrKQE2SJKmnDNQkSZJ6ykBNkiSpp7yPmtbIznN837jlx+w7p/lJkrQusUVNkiSppwzUJEmSespATZIkqacM1CRJknrKQE2SJKmnDNQkSZJ6ykBNkiSppwzUJEmSespATZIkqacM1CRJknrKQE2SJKmnDNQkSZJ6ykBNkiSppwzUJEmSespATZIkqacM1CRJknrKQE2SJKmnDNQkSZJ6ykBNkiSppwzUJEmSemreA7UkOyX5UpJLklyU5KUtfZskZyW5rP3femCdo5JcnuTSJHvPd5klSZLGYRwtarcDL6+q3wUeC7wwyW7AkcDZVbUrcHZ7TZt3MPBQYB/gXUk2GEO5JUmS5tW8B2pVdXVVfbtN3wJcAuwAHACc1BY7CTiwTR8AnFJVt1bVj4DLgT3ntdCSJEljkKoa38aTnYGvALsDV1TVVgPzfl5VWyd5J/CNqjq5pR8PfKaqTp0ivyOAIwAWLVr06FNOOWWk5b/uhpu49pcj3cQ6b48dtpzzPFeuXMlmm2025/lq7Vkn/WOd9JP10j/zVSd77bXXeVW1eHL6hiPf8jSSbAZ8DHhZVd2cZNpFp0ibMrqsqmOBYwEWL15cS5YsmYOSTu8dHzyNt144tl24Tlh+yJI5z3PZsmWMuu61ZqyT/rFO+sl66Z9x18lYrvpMshFdkPbBqvp4S742yfZt/vbAdS19BbDTwOo7AlfNV1klSZLGZRxXfQY4Hrikqt42MOt04NA2fShw2kD6wUk2TrILsCtw7nyVV5IkaVzG0W/3eODZwIVJLmhprwaOAZYmeS5wBXAQQFVdlGQpcDHdFaMvrKo75r3UGomdjzxzzvM8cZ97z3mekiSNw7wHalX1VaYedwbwhGnWORo4emSFkiRJ6iGfTCBJktRTBmqSJEk9ZaAmSZLUUwZqkiRJPWWgJkmS1FMGapIkST1loCZJktRTBmqSJEk9ZaAmSZLUUwZqkiRJPWWgJkmS1FMGapIkST1loCZJktRTBmqSJEk9ZaAmSZLUUwZqkiRJPWWgJkmS1FMGapIkST1loCZJktRTBmqSJEk9ZaAmSZLUUwZqkiRJPWWgJkmS1FMGapIkST1loCZJktRTBmqSJEk9ZaAmSZLUUxuOuwDSXLvwJzdx2JFnzll+y4/Zd87yAth5DssGc18+SVJ/2KImSZLUUwZqkiRJPbVgArUk+yS5NMnlSY4cd3kkSZJGbUGMUUuyAfBfwJ8CK4BvJjm9qi4eb8m0PpjrMWWSJA1rQQRqwJ7A5VX1Q4AkpwAHAAZqWu8thEDyxH3uPe4iSNKCtFACtR2AKwderwB+b0xlkbQO8mrc/rFOtDbm+nMz7h+aqaqxFmAYSQ4C9q6q57XXzwb2rKoXT1ruCOCI9vIhwKUjLtq2wPUj3obWnPXSP9ZJ/1gn/WS99M981cn9q2q7yYkLpUVtBbDTwOsdgasmL1RVxwLHzlehknyrqhbP1/Y0HOulf6yT/rFO+sl66Z9x18lCuerzm8CuSXZJck/gYOD0MZdJkiRppBZEi1pV3Z7kRcDngA2AE6rqojEXS5IkaaQWRKAGUFWfBj497nJMMm/drFoj1kv/WCf9Y530k/XSP2OtkwVxMYEkSdL6aKGMUZMkSVrvGKitJR9pNfeSnJDkuiTfG0jbJslZSS5r/7cemHdU2/+XJtl7IP3RSS5s896eJC194yQfaennJNl5YJ1D2zYuS3LoPL3l3kuyU5IvJbkkyUVJXtrSrZcxSbJJknOTfKfVyetbunUyZkk2SHJ+kjPaa+tkzJIsb/vzgiTfamkLq16qyr81/KO7oOEHwAOAewLfAXYbd7kW+h/wR8CjgO8NpL0ZOLJNHwn8a5vere33jYFdWn1s0OadCzwOCPAZ4Ekt/W+A97Tpg4GPtOltgB+2/1u36a3HvT/68AdsDzyqTW8O/E/b99bL+OokwGZteiPgHOCx1sn4/4C/Az4EnNFeWyfjr5PlwLaT0hZUvdiitnZ+80irqroNmHiklWahqr4C3DAp+QDgpDZ9EnDgQPopVXVrVf0IuBzYM8n2wBZV9fXqjpb3T1pnIq9TgSe0X0V7A2dV1Q1V9XPgLGCfuX5/C1FVXV1V327TtwCX0D0pxHoZk+qsbC83an+FdTJWSXYE9gWOG0i2TvppQdWLgdrameqRVjuMqSzrukVVdTV0QQNwn5Y+XR3s0KYnp6+yTlXdDtwE/NYMeWlAa9J/JF0LjvUyRq2L7QLgOrovA+tk/P4DeCVw50CadTJ+BXw+yXnpnl4EC6xeFsztOXomU6R5+ez8mq4OZqqbtVlHQJLNgI8BL6uqm9vwjCkXnSLNepljVXUH8IgkWwGfSLL7DItbJyOWZD/guqo6L8mSYVaZIs06GY3HV9VVSe4DnJXk+zMs28t6sUVt7Qz1SCvNiWtbszPt/3Utfbo6WNGmJ6evsk6SDYEt6bparc8ZJNmILkj7YFV9vCVbLz1QVTcCy+i6VKyT8Xk8sH+S5XRDYf4kyclYJ2NXVVe1/9cBn6AburSg6sVAbe34SKv5czowcbXMocBpA+kHtytudgF2Bc5tzdi3JHlsGyfwnEnrTOT1NOCLbbzB54A/S7J1u/rnz1raeq/tw+OBS6rqbQOzrJcxSbJda0kjyabAE4HvY52MTVUdVVU7VtXOdN8HX6yqZ2GdjFWSeyfZfGKabt98j4VWL7O9omJ9/QOeTHcF3A+A14y7POvCH/Bh4Grg13S/Rp5L19d/NnBZ+7/NwPKvafv/UtoVOC19cTsYfwC8k7tu7LwJ8FG6AaLnAg8YWOcvW/rlwOHj3hd9+QP+gK65/rvABe3vydbLWOvkYcD5rU6+B/xjS7dOevAHLOGuqz6tk/HWxQPoruL8DnAR7bt6odWLTyaQJEnqKbs+JUmSespATZIkqacM1CRJknrKQE2SJKmnDNQkSZJ6yicTSJp3SX6H7vl4Ae4JnAe8uKr+d6wFk6Se8fYckuZdki3pzj83ttf/Dvy0qt441oJJUs/Y9Slp3lXVTQNB2j3obho58fqvknwzyXeSfCzJvVr6iUnek+T/Jvmf9nxFkhyW5KdJLmh/P01y2MS2kixPcmGSi5N8r6XtmeRrSc5v/x/S0r/U8liZ5NI2vf90yw9KsiRJJdmnvd46yS+TvC7JA5N8e2DZXdM9JHqjJGcl2belL0uyOMmm7X0+vqWvHFj3xCRPG3hv27bpkwfe32FJ3jmwzjsH94mkhcNATdJYtGDkAuCnwMOB/26zPl5Vj6mqhwOX0D2hYsLOwB8D+wLvSbJJS/9IVT2iqh4BfGTSpjZo6zx5IO37wB9V1SOBfwTeCFBVe7U8vgUc0vI8fbrlp/BtusfLADyT7o7oVNUPgJuSPKLNOxw4sap+DTwdeF2Sh03sGuD9wHur6v9Ns51VJNkDmOnB7JIWKAM1SWNRVb9sQdEiuoDmNW3W7q016ULgEOChA6strao7q+oy4IfA7wyxqU2BX01K2xL4aGuB+vdJ25jKsMtfDWycZBtgf1Z9BvBxwOFJNgCeAXwIoKp+3uadAWwH/AvdY6I+OLDuDUkePEP53gD806S0Z0y0MrbtSVqADNQkjVVV3Q6cAjymJZ0IvKiq9gBeT9ct+pvFJ68+U96txe0eU1yk8C/Al6pqd+Apk7YxlTVZ/kPAMXTPCrxtIP1jwJOA/YDzqupnrYybAy8CXgY8iK4L+PPA8wbWfRnw8RZ07T9pe78PrKS13g2YqZVR0gJhoCZp3rUxWvdr06ELPs5tszcHrk6yEV2L2qCDktwjyQPpHrh86Wo29TTg61Okbwn8pE0fNkSR12T5TwGPAk4YTKyqXwGfA94NvG9g1uuBd1XVx1tZ30LXuvjSifFnVfXxqtq9BV2DrXQAr6PrjpW0DjJQkzQOmwGnthai8+luFfSmNu8fgHOAs+jGhg26FPgy8Bngr1vwM6Ukfw68gK41arI3A29K8v/oxrCtztDLV9VtVbW4qi6YYvYH6VoBP9/KuAfwOOC9k/K4mW4c3L8OUbZz2hg4Sesgb88haUFIciJwRlWdOu6yrK0kfw9sWVX/MO6ySFoYvOGtJM2DJJ8AHgj8ybjLImnhsEVNkiSppxyjJkmS1FMGapIkST1loCZJktRTBmqSJEk9ZaAmSZLUUwZqkiRJPfX/ASKmvwPYxmKQAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10, 5)) \n",
+ "plt.title('Распределение по заработной плате у мужчин с высшим образованием') \n",
+ "plt.xlabel('Зарплата мужчин') \n",
+ "plt.ylabel('Количество мужчин') \n",
+ "plt.grid() \n",
+ "\n",
+ "plt.hist(male_height['salary'], \n",
+ " bins=25) \n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 206,
+ "id": "1e10bc06",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " salary \n",
+ " educationType \n",
+ " jobTitle \n",
+ " qualification \n",
+ " gender \n",
+ " dateModify \n",
+ " skills \n",
+ " otherInfo \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 76 \n",
+ " 50000 \n",
+ " Незаконченное высшее \n",
+ " менеджер по продажам \n",
+ " NaN \n",
+ " Мужской \n",
+ " 2021-09-06 \n",
+ " <p>Внимательность, ответственность, обучаемост... \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 193 \n",
+ " 50000 \n",
+ " Незаконченное высшее \n",
+ " Старший специалист участка учета ТМЦ \n",
+ " NaN \n",
+ " Мужской \n",
+ " 2021-04-06 \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 202 \n",
+ " 50000 \n",
+ " Незаконченное высшее \n",
+ " Мастер погрузки лесоматериала \n",
+ " NaN \n",
+ " Мужской \n",
+ " 2021-05-20 \n",
+ " <ul><li>умение работать самостоятельно;</li><l... \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 203 \n",
+ " 30000 \n",
+ " Незаконченное высшее \n",
+ " Военнослужащий \n",
+ " NaN \n",
+ " Мужской \n",
+ " 2021-04-06 \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 292 \n",
+ " 100000 \n",
+ " Незаконченное высшее \n",
+ " менеджер \n",
+ " NaN \n",
+ " Мужской \n",
+ " 2021-10-19 \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 32396 \n",
+ " 50000 \n",
+ " Незаконченное высшее \n",
+ " NaN \n",
+ " NaN \n",
+ " Мужской \n",
+ " 2020-11-08 \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 32490 \n",
+ " 100000 \n",
+ " Незаконченное высшее \n",
+ " Начальник участка \n",
+ " Бакалавр \n",
+ " Мужской \n",
+ " 2019-05-16 \n",
+ " <p>Многозадачность, Контроль исполнения решени... \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 32602 \n",
+ " 25000 \n",
+ " Незаконченное высшее \n",
+ " Продавец-кавист/бармен \n",
+ " NaN \n",
+ " Мужской \n",
+ " 2021-10-09 \n",
+ " <p>Стрессоустойчивость, коммуникабельность,&nb... \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 32622 \n",
+ " 15000 \n",
+ " Незаконченное высшее \n",
+ " Экспедитор-грузчик \n",
+ " NaN \n",
+ " Мужской \n",
+ " 2020-06-16 \n",
+ " <p>Работа с компьютером</p> \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 32645 \n",
+ " 50000 \n",
+ " Незаконченное высшее \n",
+ " NaN \n",
+ " NaN \n",
+ " Мужской \n",
+ " 2021-10-05 \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
348 rows × 8 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " salary educationType jobTitle \\\n",
+ "76 50000 Незаконченное высшее менеджер по продажам \n",
+ "193 50000 Незаконченное высшее Старший специалист участка учета ТМЦ \n",
+ "202 50000 Незаконченное высшее Мастер погрузки лесоматериала \n",
+ "203 30000 Незаконченное высшее Военнослужащий \n",
+ "292 100000 Незаконченное высшее менеджер \n",
+ "... ... ... ... \n",
+ "32396 50000 Незаконченное высшее NaN \n",
+ "32490 100000 Незаконченное высшее Начальник участка \n",
+ "32602 25000 Незаконченное высшее Продавец-кавист/бармен \n",
+ "32622 15000 Незаконченное высшее Экспедитор-грузчик \n",
+ "32645 50000 Незаконченное высшее NaN \n",
+ "\n",
+ " qualification gender dateModify \\\n",
+ "76 NaN Мужской 2021-09-06 \n",
+ "193 NaN Мужской 2021-04-06 \n",
+ "202 NaN Мужской 2021-05-20 \n",
+ "203 NaN Мужской 2021-04-06 \n",
+ "292 NaN Мужской 2021-10-19 \n",
+ "... ... ... ... \n",
+ "32396 NaN Мужской 2020-11-08 \n",
+ "32490 Бакалавр Мужской 2019-05-16 \n",
+ "32602 NaN Мужской 2021-10-09 \n",
+ "32622 NaN Мужской 2020-06-16 \n",
+ "32645 NaN Мужской 2021-10-05 \n",
+ "\n",
+ " skills otherInfo \n",
+ "76 Внимательность, ответственность, обучаемост... NaN \n",
+ "193 NaN NaN \n",
+ "202