-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
51 lines (38 loc) · 1.41 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import cv2
import os
import time
import numpy as np
cam = cv2.VideoCapture(0)
cam.set(3, 640) # set video width
cam.set(4, 480) # set video height
face_detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# For each person, enter one numeric face id
face_id = input('\n enter user id end press <return> ==> ')
print("\n [INFO] Initializing face capture. Look the camera and wait ...")
# Initialize individual sampling face count
count = 0
while(True):
ret, img = cam.read()
kernel=np.array([[-1,-1,-1],[-1,9,-1],[-1,-1,-1]])
sharpened=cv2.filter2D(img,-1,kernel)
#cv2.imshow('shrped',sharpened)
#cv2.destroyAllWindows()
gray = cv2.cvtColor(sharpened, cv2.COLOR_BGR2GRAY)
faces = face_detector.detectMultiScale(gray, 1.25, 5)
for (x,y,w,h) in faces:
cv2.rectangle(sharpened, (x,y), (x+w,y+h), (255,0,0), 2)
count += 1
# Save the captured image into the datasets folder
cv2.imwrite("dataset/r." + str(face_id) + '.' + str(count) + ".png", gray[y:y+h,x:x+w])
cv2.imshow('image', img)
k = cv2.waitKey(100) & 0xff # Press 'ESC' for exiting video
if k == 27:
break
elif count >= 10:
# Take 30 face sample and stop video
break
time.sleep(1)
# Do a bit of cleanup
print("\n [INFO] Exiting Program and cleanup stuff")
cam.release()
cv2.destroyAllWindows()