Skip to content

Latest commit

 

History

History
34 lines (33 loc) · 1.21 KB

README.md

File metadata and controls

34 lines (33 loc) · 1.21 KB

Machine Learning from scratch

Implementation of machine learning algorithms from scratch


The following algorithms are implemented to date:

  1. Train Test Split
  2. Stratified Split
  3. K-Fold Cross Validation
  4. Stratified K-Fold Cross Validation
  5. Linear Regression with Batch Gradient Descent optimizer
  6. Linear Regression with Mini-Batch Gradient Descent optimizer
  7. Least Absolute Deviation (LAD) Regression
  8. Multiple Linear Regression
  9. Logistic Regression
  10. Multiple Logistic Regression
  11. K Nearest Neighbors
  12. K-Means Clustering
  13. Implementing Receiver Operating Characteristic (ROC) Curve
  14. Implementing Precision Recall Curve (PRC)
  15. Word2Vec implementation in Keras
  16. Word2Vec implementation in PyTorch
  17. Simulating Random Walks
  18. How random are Python numbers?
  19. Principal Component Analysis
  20. Singular Value Decomposition
  21. Collaborative Filtering
  22. Bag of Words (BOW) modelling
  23. Linear Discriminant Analysis (LDA) v/s Principal Component Analysis (PCA)
  24. Understanding Loss Functions
  25. Multi-Label Classification
  26. Recommendation Evaluation Metrics
  27. Hierarchical Clustering
  28. Density-based spatial clustering of applications with noise (DBSCAN)
  29. Naive Bayes Classifier