-
Notifications
You must be signed in to change notification settings - Fork 12
/
0_1knapsack.cpp
57 lines (49 loc) · 1.32 KB
/
0_1knapsack.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
// A Dynamic Programming based solution for 0-1 Knapsack problem
#include <iostream>
using namespace std;
// A utility function that returns maximum of two integers
int max(int a, int b)
{
return (a > b) ? a : b;
}
// Returns the maximum value that can be put in a knapsack of capacity W
int knapSack(int W, int wt[], int val[], int n)
{
int i, w;
int K[n + 1][W + 1];
// Build table K[][] in bottom up manner
for (i = 0; i <= n; i++)
{
for (w = 0; w <= W; w++)
{
if (i == 0 || w == 0)
K[i][w] = 0;
else if (wt[i - 1] <= w)
K[i][w]
= max(val[i - 1] + K[i - 1][w - wt[i - 1]], K[i - 1][w]);
else
K[i][w] = K[i - 1][w];
}
}
return K[n][W];
}
int main()
{
cout << "Enter the number of items in a Knapsack:";
int n, W;
cin >> n;
int val[n], wt[n];
for (int i = 0; i < n; i++)
{
cout << "Enter value and weight for item " << i << ":";
cin >> val[i];
cin >> wt[i];
}
// int val[] = { 60, 100, 120 };
// int wt[] = { 10, 20, 30 };
// int W = 50;
cout << "Enter the capacity of knapsack";
cin >> W;
cout << knapSack(W, wt, val, n);
return 0;
}