-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
288 lines (249 loc) · 12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import random
import sys
import time
import numpy as np
import torch
import torch.optim as optim
import torch.nn as nn
import torch.multiprocessing as mp
from torch.utils.tensorboard import SummaryWriter
"""
try:
from tensorboardX import SummaryWriter
except ImportError:
raise ImportError('tensorboardX must be installed. Please see README.')
"""
from train import train
import util
# Training settings
parser = argparse.ArgumentParser(description='PyTorch Training')
parser.add_argument('--binary-p', type=float, default=0.1, metavar='BP',
help='Percentage to binarize (default: 0.1)')
parser.add_argument('--batch-size', type=int, default=100, metavar='BS',
help='input batch size for training (default: 100)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='TBS',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='E',
help='number of epochs to train (default: 10)')
parser.add_argument('--patience', type=int, default=0, metavar='P',
help='Patient for new accuracies (default: 0 off)')
parser.add_argument('--lr', type=float, default=0.01, metavar='OLR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='OM',
help='SGD momentum (default: 0.0)')
parser.add_argument('--scheduler-milestones', default='[150,250]', metavar='SM',
help='Epoch schedule to reduce learning rate')
parser.add_argument('--scheduler-gamma', type=float, default=0.1, metavar='SG',
help='Learning rate reduction scaling (default: 0.1)')
"""
parser.add_argument('--lr-gamma', type=float, default=1.0, metavar='OLRG',
help='learning rate gamma (default: 1.0 ie off)(set to less than 1.0)')
"""
"""
BinaryConnect LR_decay
https://github.com/MatthieuCourbariaux/BinaryConnect/blob/lasagne/mnist.py
num_epochs=250
LR_start = .001
LR_fin = 0.000003
LR_decay = (LR_fin/LR_start)**(1./num_epochs)
"""
parser.add_argument('--seed', type=int, default=316, metavar='S',
help='random seed (default: 316)')
parser.add_argument('--log-interval', type=int, default=20, metavar='LI',
help='how many batches to wait before logging training status')
parser.add_argument('--num-processes', type=int, default=2, metavar='N',
help='how many training processes to use (default: 2)')
parser.add_argument('--gpu', type=int, default=0, metavar='G',
help='which GPU to use (default: 0)')
parser.add_argument('--logdir', default='./logs', metavar='L',
help='directory to write logs (default: ./logs)')
parser.add_argument('--model', default='mlp', metavar='M',
help='Choose NN model. Check load_model()')
parser.add_argument('--dataset', default='mnist', metavar='D',
help='Choose dataset: mnist (default), cifar10, svhn')
parser.add_argument('--dataset-folder', default='./data', metavar='DF',
help='Folder to datasets')
parser.add_argument('--use-data-augmentation', action='store_true',
help='Turn on data augmentation (default: off)')
parser.add_argument('--dataset-indices', default='cifar10_split0613.json',
help='Index file for dataset. Default: cifar10_split0613.json')
parser.add_argument('--epochs-per-layer', type=int, default=150, metavar='EPL',
help='Epochs per layer for layer-by-layer binarization (default: 150)')
parser.add_argument('--layers-indices', default='layers.json',
help='Index file for layers. Default: layers.json')
parser.add_argument('--reverse-layer-binarization', action='store_true',
help='Reverse layer binarization (default: off)')
parser.add_argument('--test-validation', action='store_true',
help='Test validation data (default: off)')
parser.add_argument('--test-training', action='store_true',
help='Test training dataset at each epoch (default: off)')
parser.add_argument('--record-histogram', action='store_true',
help='Save histogram to tensorboard (default: off)')
parser.add_argument('--save-progress', action='store_true',
help='Turn on save progress')
parser.add_argument('--save-last', action='store_true',
help='Save model at the end of training')
parser.add_argument('--load-last', action='store_true',
help='Save model at the end of training')
parser.add_argument('--load-last-file', default='last.tar',
help='Save file to load (default: last.tar)')
parser.add_argument('--verbose', action='store_true',
help='Turn on verbose mode')
def load_model(args):
"""Load NN model
"""
if args.dataset == 'mnist':
if args.model == '300':
from models.mlp3 import Mlp3
return Mlp3(in_features=784, layer_features1=300, layer_features2=100, out_features=10)
elif args.model == '300_layer':
from models.mlp3 import Mlp3Binary
return Mlp3Binary(in_features=784, layer_features1=300, layer_features2=100, out_features=10,
epochs_per_layer=args.epochs_per_layer, all_binary=False, layers_json=args.layers_indices)
elif args.model == '300_binary':
from models.mlp3 import Mlp3Binary
return Mlp3Binary(in_features=784, layer_features1=300, layer_features2=100, out_features=10,
epochs_per_layer=args.epochs_per_layer, all_binary=True, layers_json=args.layers_indices)
elif args.model == '784':
from models.mlp3 import Mlp3
return Mlp3(in_features=784, layer_features1=784, layer_features2=784, out_features=10)
elif args.model == '784_layer':
from models.mlp3 import Mlp3Binary
return Mlp3Binary(in_features=784, layer_features1=784, layer_features2=784, out_features=10,
epochs_per_layer=args.epochs_per_layer, all_binary=False, layers_json=args.layers_indices)
elif args.model == '784_binary':
from models.mlp3 import Mlp3Binary
return Mlp3Binary(in_features=784, layer_features1=784, layer_features2=784, out_features=10,
epochs_per_layer=args.epochs_per_layer, all_binary=True, layers_json=args.layers_indices)
else:
raise NotImplementedError(
'Unknown model requested: {}'.format(args.model))
elif args.dataset == 'cifar10':
if args.model == 'vgg5':
from models.vgg5 import Vgg5
return Vgg5()
elif args.model == 'vgg5_layer':
from models.vgg5binary import Vgg5Binary
return Vgg5Binary(epochs_per_layer=args.epochs_per_layer, all_binary=False, layers_json=args.layers_indices)
elif args.model == 'vgg5_binary':
from models.vgg5binary import Vgg5Binary
return Vgg5Binary(epochs_per_layer=args.epochs_per_layer, all_binary=True, layers_json=args.layers_indices)
elif args.model == 'vgg9':
from models.vgg9 import Vgg9
return Vgg9()
elif args.model == 'vgg9_layer':
from models.vgg9binary import Vgg9Binary
return Vgg9Binary(epochs_per_layer=args.epochs_per_layer, all_binary=False, layers_json=args.layers_indices)
elif args.model == 'vgg9_binary':
from models.vgg9binary import Vgg9Binary
return Vgg9Binary(epochs_per_layer=args.epochs_per_layer, all_binary=True, layers_json=args.layers_indices)
elif args.model == 'resnet20':
from models.resnet import resnet20
net = resnet20()
net.criterion = nn.CrossEntropyLoss()
return net
elif args.model == 'resnet20_layer':
from models.resnet_control import resnet20
net = resnet20(epochs_per_layer=args.epochs_per_layer,
all_binary=False, layers_json=args.layers_indices)
net.criterion = nn.CrossEntropyLoss()
return net
elif args.model == 'resnet20_binary':
from models.resnet_control import resnet20
net = resnet20(epochs_per_layer=args.epochs_per_layer,
all_binary=True, layers_json=args.layers_indices)
net.criterion = nn.CrossEntropyLoss()
return net
else:
raise NotImplementedError(
'Unknown model requested: {}'.format(args.model))
else:
raise NotImplementedError(
'Unknown dataset requested: {}'.format(args.dataset))
def add_optimizer_scheduler(args, net):
if args.model.startswith('resnet20'):
net.optimizer = optim.SGD(
net.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=1e-4)
net.scheduler = optim.lr_scheduler.MultiStepLR(net.optimizer, milestones=eval(
args.scheduler_milestones), gamma=args.scheduler_gamma)
return net
def load_dataset(args):
if args.dataset == 'mnist':
data_loaders = util.dataset.load_mnist_with_validation(
args, data_folder=args.dataset_folder)
elif args.dataset == 'cifar10':
data_loaders = util.dataset.load_cifar10_with_preselected_validation_fix_validation_transform(
batch_size=args.batch_size,
test_batch_size=args.test_batch_size,
use_data_augmentation=args.use_data_augmentation,
index_file=args.dataset_indices,
data_folder=args.dataset_folder
)
else:
raise NotImplementedError('Unknown dataset requested')
return data_loaders
def save_args(args, writer):
print("argv: {}".format(sys.argv))
writer.add_text('argv', str(sys.argv), 0)
print("args:")
options = vars(args)
for k, v in options.items():
#print(" {} {} {} {}".format(k, v, type(k), type(v)))
print(" {} {}".format(k, v))
writer.add_text("args/"+k, str(v), 0)
def set_all_seed(seed):
print("Setting all seeds to {}".format(seed))
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.backends.cudnn.enabled:
print("CuDNN enabled")
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def show_weights(net):
total = 0
for idx, m in enumerate(net.modules()):
#print(idx, '->', m)
"""
if hasattr(m, 'weight'):
if not isinstance(m, (nn.BatchNorm2d, nn.BatchNorm1d)):
print(idx, '->', m, 'n_weight', m.weight.nelement())
total += m.weight.nelement()
"""
if isinstance(m, (nn.Linear, nn.Conv2d)):
print(idx, '->', m, 'n_weight', m.weight.nelement())
total += m.weight.nelement()
print("Total number of weights: {}".format(total))
def main():
main_start = time.time()
args = parser.parse_args()
if not os.path.exists(args.logdir):
os.makedirs(args.logdir)
set_all_seed(args.seed)
writer = SummaryWriter(args.logdir+'/tb')
save_args(args, writer)
device = torch.device("cuda:"+str(args.gpu)
if torch.cuda.is_available() else "cpu")
# Assume that we are on a CUDA machine, then this should print a CUDA device:
print('Hardware: {}'.format(device)) # cuda:X
writer.add_text('hardware', str(device), 0)
model = load_model(args)
model = add_optimizer_scheduler(args, model)
print(model)
show_weights(model)
data_loaders = load_dataset(args)
if torch.cuda.is_available():
train(args, model, data_loaders, device, writer)
else:
print("Please run with a GPU")
print("Closing writer...")
writer.close() # close to flush cache
print('Script duration: {:.4f} hours'.format(
(time.time() - main_start)/3600.0))
if __name__ == '__main__':
main()