-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLLR.c
200 lines (154 loc) · 4.9 KB
/
LLR.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#define MAIN
#include "worldline.h"
int llr_target;
double llr_gaussian_weight = 5; // Used in thermalisation even with wall
double llr_a = 0; // The measurable a in the llr method
int llr_constant_steps = 100; // Number of (roughly) constant steps at start
double llr_alpha = 0.1; // Step size
int current_sector;
int llr_accepted;
int sector_changes;
// In LLR, modify the acceptance rate based on the
// number of negative loops
void LLR_update( double deltaS ){
static int iter = 1;
double step = llr_alpha*llr_constant_steps/(iter+llr_constant_steps);
llr_a -= step*deltaS;
iter ++;
}
// Get the modified weight of a sector
double LLR_weight( sector ){
double distance, logweight, weight, a;
distance = sector - llr_target-0.5;
logweight = -(distance*distance-0.25)*llr_gaussian_weight;
if( distance < 0 ){
logweight += 0.5*llr_a;
} else {
logweight -= 0.5*llr_a;
}
weight = exp(logweight);
return weight;
}
/* Check wether to accept a configuration */
int current_sector = 0;
int llr_accepted=0;
int sector_changes=0;
int llr_accept(){
int accept = 1;
int sector;
double current_distance, previous_distance, weight;
sector = negative_loops();
if( sector != current_sector ){
weight = LLR_weight(sector)/LLR_weight(current_sector);
if( mersenne() < weight ){
sector_changes += 1;
accept = 1;
current_sector = sector;
} else {
accept = 0;
}
}
if( accept ){
llr_accepted += 1;
}
return accept;
}
/* Perform an update and accept/reject */
int update( int nsteps )
{
int changes=0;
save_config();
changes += update_config(nsteps);
if( ! llr_accept() ){
restore_config();
}
return changes;
}
/* Main function
*/
int main(int argc, char* argv[])
{
#ifdef DEBUG
feenableexcept(FE_INVALID | FE_OVERFLOW);
#endif
int i,n_loops,n_measure,n_average,llr_update_every;
setup_lattice();
/* Read in the input */
get_int("Number of updates", &n_loops);
get_int("Updates / measurement", &n_measure);
get_int("Updates between saves", &n_average);
printf("\n %d updates per measurements\n", n_measure );
read_thirring_parameters();
get_double("LLR step size", &llr_alpha);
get_int("LLR steps with dampened decay", &llr_constant_steps);
get_int("Target LLR sector", &llr_target);
get_double("LLR initial a", &llr_a);
get_int("Updates / LLR update", &llr_update_every);
printf("\n LLR target %d\n", llr_target );
printf(" LLR updated every %ld updates\n", llr_update_every );
printf(" LLR step size %g\n", llr_alpha );
printf(" LLr %d first steps with dampened decay\n", llr_constant_steps );
/* and the update/measure loop */
int sum_sign=0;
int sectors[MAX_SECTOR];
for(i=0; i<MAX_SECTOR; i++)
sectors[i] = 0;
double sum_llr_a = 0;
int sector=0;
for (i=1;; i++) {
// Wait for the target sector to be reached before
// starting measurement runs
update( 1 );
sector = current_sector;
if( sector == llr_target || sector == llr_target+1 ) {
break;
}
if( i== n_loops ){
printf( "Did not reach LLR target sector in %d updates\n", n_loops );
exit(1);
}
}
printf( "Reached LLR target sector in %d thermalisation updates\n", i );
llr_accepted = 0;
sector_changes = 0;
struct timeval start, end;
double updatetime=0, measuretime = 0;
gettimeofday(&start,NULL);
for (i=1; i<n_loops+1; i++) {
/* Update */
update(n_measure);
/* Time and report */
gettimeofday(&end,NULL);
updatetime += 1e6*(end.tv_sec-start.tv_sec) + end.tv_usec-start.tv_usec;
gettimeofday(&start,NULL);
int sector = current_sector;
int sign = 1-(sector%2)*2;
sum_sign += sign;
// Update the LLR transition propability
if(i%llr_update_every==0){
double llr_dS = (double)(sectors[llr_target]-sectors[llr_target+1])/(double)llr_update_every;
LLR_update( llr_dS );
sectors[llr_target] = 0;
sectors[llr_target+1] = 0;
sum_llr_a += llr_a;
}
gettimeofday(&end,NULL);
measuretime += 1e6*(end.tv_sec-start.tv_sec) + end.tv_usec-start.tv_usec;
if(i%n_average==0){
printf("\n%d, %d updates in %.3g seconds\n", i*n_measure, n_average*n_measure, 1e-6*updatetime);
printf("%d, %d measurements in %.3g seconds\n", i*n_measure, n_average, 1e-6*measuretime);
printf("%d, acceptance %.3g, sector change rate %.3g \n", i*n_measure, (double)llr_accepted/n_average, (double)sector_changes/n_average);
llr_accepted = 0; sector_changes = 0;
updatetime = 0; measuretime = 0;
printf("SIGN %g\n", (double)sum_sign/n_average);
double llr_a_ave = sum_llr_a/n_average*llr_update_every;
printf("LLR a_%d = %g, exp(a) = %g\n", llr_target, llr_a_ave, exp(llr_a_ave));
sum_llr_a = 0;
write_configuration(configuration_filename);
sum_sign = 0;
}
gettimeofday(&start,NULL);
}
printf(" ** simulation done\n");
return(0);
}