-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
296 lines (240 loc) · 10.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import re
import numpy as np
import glob
import os
import csv
import itertools
import matplotlib.pyplot as plt
from keras.metrics import top_k_categorical_accuracy
def top_3_accuracy(y_true, y_pred):
return top_k_categorical_accuracy(y_true, y_pred, k=3)
## From : https://github.com/DantesLegacy/TensorFlow_AudioSet_Example/blob/4ff964048ee528acb685e2af5d941353446a044b/src/neural_network_audioset.py
## Importante! Esta função está assumindo que existem um header de 3 linhas em cada CSV
def get_file_name_labels_from_audioset_csv(row_num,csv_file,audioset_indices_csv):
str_labels = []
int_labels = []
# Open choosen CSV file
with open(csv_file, 'r') as f:
# Skip to the line we need.
line = next(itertools.islice(csv.reader(f), int(row_num) + 3, None))
#print("line:",line)
# Now that we have the line we need, we need to grab the labels from it
# This file may have multiple labels, so we need to account for that
for element in line[3:]:
if (element.startswith(' "')) and (element.endswith('"')):
str_labels.append(element[2:-1])
elif element.startswith(' "'):
str_labels.append(element[2:])
elif element.endswith('"'):
str_labels.append(element[:-1])
else:
str_labels.append(element)
# Now we have the string version of the labels.
# Let's convert them to int versions
for element in str_labels:
with open(audioset_indices_csv, 'r') as f:
reader = csv.reader(f)
for row in reader:
if row[1] == element:
int_labels.append(int(row[0]))
return int_labels
def natural_sort(l):
convert = lambda text: int(text) if text.isdigit() else text.lower()
alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
return sorted(l, key=alphanum_key)
def k_hot_encode(labels,n_unique_labels):
n_labels = len(labels)
k_hot_encode = np.zeros((n_labels,n_unique_labels))
# Mark the relevant values in the area as '1'
# This can be multiple elements in the array as there can be
# multiple labels to a sample
for index in range(n_labels):
for element in labels[index]:
#print(index,element)
k_hot_encode[index, element] = 1
return k_hot_encode
def assure_path_exists(path):
mydir = os.path.join(os.getcwd(), path)
if not os.path.exists(mydir):
os.makedirs(mydir)
def save_files(data_dir,features,labels,save_h5 = False):
labels = k_hot_encode(labels,n_unique_labels = 7)
print "Features of = ", features.shape
print "Labels of = ", labels.shape
if save_h5:
feature_file = os.path.join(data_dir + '_x.hdf5')
labels_file = os.path.join(data_dir + '_y.hdf5')
with h5py.File(feature_file, 'w') as hf:
hf.create_dataset("features", data=features,compression="gzip", compression_opts=9)
with h5py.File(labels_file, 'w') as hf:
hf.create_dataset("labels", data=labels,compression="gzip", compression_opts=9)
else:
feature_file = os.path.join(data_dir + '_x.npy')
labels_file = os.path.join(data_dir + '_y.npy')
np.save(feature_file, features)
np.save(labels_file, labels)
print "Saved " + feature_file
print "Saved " + labels_file
from sklearn.metrics import f1_score, precision_score, recall_score,hamming_loss
from keras.callbacks import Callback
class custom_metrics(Callback):
def on_train_begin(self, logs={}):
self.custom_metrics = {}
self.custom_metrics['val_f1s'] = []
self.custom_metrics['val_recalls'] = []
self.custom_metrics['val_precisions'] = []
self.custom_metrics['val_hamming_loss'] = []
def on_epoch_end(self, epoch, logs={}):
val_predict = (np.asarray(self.model.predict(self.validation_data[0]))).round()
val_targ = self.validation_data[1]
_val_f1 = f1_score(val_targ, val_predict,average='micro')
_val_recall = recall_score(val_targ, val_predict,average='micro')
_val_precision = precision_score(val_targ, val_predict,average='micro')
_val_hamming_loss = hamming_loss(val_targ, val_predict)
self.custom_metrics['val_f1s'].append(_val_f1)
self.custom_metrics['val_recalls'].append(_val_recall)
self.custom_metrics['val_precisions'].append(_val_precision)
self.custom_metrics['val_hamming_loss'].append(_val_hamming_loss)
#print " — val_f1: %f — val_precision: %f — val_recall %f — val_hamming_loss %f" %(_val_f1, _val_precision, _val_recall,_val_hamming_loss)
return
def multilabel_confusion_matrix(eval_y,predictions,n_classes):
"""
Compute True positive, True negative, False positive,False negative
for a multilabel classification problem
https://github.com/scikit-learn/scikit-learn/issues/3452
http://www.cnts.ua.ac.be/~vincent/pdf/microaverage.pdf
"""
def check_predicted_labels(label_no,predictions):
TP = 0
FP = 0
TN = 0
FN = 0
for idx, val in enumerate(predictions):
if(val[label_no] == 1 and eval_y[idx][label_no] == 1):
TP += 1
elif(val[label_no] == 0 and eval_y[idx][label_no] == 0):
TN += 1
elif(val[label_no] == 1 and eval_y[idx][label_no] == 0):
FP += 1
elif(val[label_no] == 0 and eval_y[idx][label_no] == 1):
FN += 1
return(TP, FP, TN, FN)
print("Multilabel Confusion Matrix")
print(" TP, FP, TN, FN, ")
predicted_matrix = np.empty((0,4),dtype=int)
for i in range(n_classes):
TP,FP, TN, FN = check_predicted_labels(i,predictions)
temp = np.hstack([TP,FP,TN,FN])
predicted_matrix = np.vstack([predicted_matrix,temp])
for idx in range(n_classes):
print idx,('\t'.join(map(str,predicted_matrix[idx])))
print "Σ",('\t'.join(map(str,predicted_matrix.sum(axis=0))))
print("")
print("F1 Score: %f"%f1_score(eval_y, predictions,average='micro'))
print("Recall: %f"%recall_score(eval_y, predictions,average='micro'))
print("Precision: %f"%precision_score(eval_y, predictions,average='micro'))
print("Hamming Loss: %f"%hamming_loss(eval_y, predictions))
def plot_history(hist):
print "History keys:", (hist.history.keys())
#summarise history for training and validation set accuracy
if ('val_loss' in hist.history):
for key in hist.history.keys():
if key[:4] == "val_":
continue
elif(key == "lr"):
continue
else:
plt.subplot()
plt.plot(hist.history[key])
plt.plot(hist.history['val_%s'%key])
plt.title('Model %s'%key)
plt.ylabel(key)
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.show()
else:
for key in hist.history.keys():
plt.subplot()
plt.plot(hist.history[key])
plt.title('Model %s'%key)
plt.ylabel(key)
plt.xlabel('epoch')
plt.legend(['train'], loc='upper left')
plt.show()
def plot_metrics(metrics):
for key in metrics.custom_metrics.keys():
plt.subplot()
plt.plot(metrics.custom_metrics[key])
plt.title('Model %s'%key)
plt.ylabel(key)
plt.xlabel('epoch')
plt.legend(['validation'], loc='upper left')
plt.show()
# From: https://github.com/philipperemy/keras-visualize-activations
def get_activations(model, model_inputs, print_shape_only=True, layer_name=None):
import keras.backend as K
print('----- activations -----')
activations = []
inp = model.input
model_multi_inputs_cond = True
if not isinstance(inp, list):
# only one input! let's wrap it in a list.
inp = [inp]
model_multi_inputs_cond = False
outputs = [layer.output for layer in model.layers if
layer.name == layer_name or layer_name is None] # all layer outputs
funcs = [K.function(inp + [K.learning_phase()], [out]) for out in outputs] # evaluation functions
if model_multi_inputs_cond:
list_inputs = []
list_inputs.extend(model_inputs)
list_inputs.append(1.)
else:
list_inputs = [model_inputs, 1.]
# Learning phase. 1 = Test mode (no dropout or batch normalization)
# layer_outputs = [func([model_inputs, 1.])[0] for func in funcs]
layer_outputs = [func(list_inputs)[0] for func in funcs]
for layer_activations in layer_outputs:
activations.append(layer_activations)
if print_shape_only:
print(layer_activations.shape)
else:
print(layer_activations)
return activations
# From: https://github.com/philipperemy/keras-visualize-activations
def display_activations(activation_maps):
import numpy as np
import matplotlib.pyplot as plt
"""
(1, 26, 26, 32)
(1, 24, 24, 64)
(1, 12, 12, 64)
(1, 12, 12, 64)
(1, 9216)
(1, 128)
(1, 128)
(1, 10)
"""
batch_size = activation_maps[0].shape[0]
assert batch_size == 1, 'One image at a time to visualize.'
for i, activation_map in enumerate(activation_maps):
print('Displaying activation map {}'.format(i))
shape = activation_map.shape
print(len(shape))
if len(shape) == 4:
activations = np.hstack(np.transpose(activation_map[0], (2, 0, 1)))
elif len(shape) == 2:
# try to make it square as much as possible. we can skip some activations.
activations = activation_map[0]
num_activations = len(activations)
if num_activations > 900: # too hard to display it on the screen.
square_param = int(np.floor(np.sqrt(num_activations)))
activations = activations[0: square_param * square_param]
activations = np.reshape(activations, (square_param, square_param))
else:
activations = np.expand_dims(activations, axis=0)
else:
raise Exception('len(shape) = 3 has not been implemented.')
plt.imshow(activations, interpolation='None', cmap='jet')
plt.show()