forked from mfem/mfem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ex31.cpp
465 lines (398 loc) · 16.7 KB
/
ex31.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
// MFEM Example 31
//
// Compile with: make ex31
//
// Sample runs: ex31 -m ../data/inline-segment.mesh -o 2
// ex31 -m ../data/hexagon.mesh -o 2
// ex31 -m ../data/star.mesh -o 2
// ex31 -m ../data/fichera.mesh -o 3 -r 1
// ex31 -m ../data/square-disc-nurbs.mesh -o 3
// ex31 -m ../data/amr-quad.mesh -o 2 -r 1
// ex31 -m ../data/amr-hex.mesh -r 1
//
// Description: This example code solves a simple electromagnetic diffusion
// problem corresponding to the second order definite Maxwell
// equation curl curl E + sigma E = f with boundary condition
// E x n = <given tangential field>. In this example sigma is an
// anisotropic 3x3 tensor. Here, we use a given exact solution E
// and compute the corresponding r.h.s. f. We discretize with
// Nedelec finite elements in 1D, 2D, or 3D.
//
// The example demonstrates the use of restricted H(curl) finite
// element spaces with the curl-curl and the (vector finite
// element) mass bilinear form, as well as the computation of
// discretization error when the exact solution is known. These
// restricted spaces allow the solution of 1D or 2D
// electromagnetic problems which involve 3D field vectors. Such
// problems arise in plasma physics and crystallography.
//
// We recommend viewing example 3 before viewing this example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
// Exact solution, E, and r.h.s., f. See below for implementation.
void E_exact(const Vector &, Vector &);
void CurlE_exact(const Vector &, Vector &);
void f_exact(const Vector &, Vector &);
real_t freq = 1.0, kappa;
int dim;
int main(int argc, char *argv[])
{
// 1. Parse command-line options.
const char *mesh_file = "../data/inline-quad.mesh";
int ref_levels = 2;
int order = 1;
bool visualization = 1;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&ref_levels, "-r", "--refine",
"Number of times to refine the mesh uniformly.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&freq, "-f", "--frequency", "Set the frequency for the exact"
" solution.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.ParseCheck();
kappa = freq * M_PI;
// 2. Read the mesh from the given mesh file. We can handle triangular,
// quadrilateral, or mixed meshes with the same code.
Mesh mesh(mesh_file, 1, 1);
dim = mesh.Dimension();
// 3. Refine the mesh to increase the resolution. In this example we do
// 'ref_levels' of uniform refinement (2 by default, or specified on
// the command line with -r).
for (int lev = 0; lev < ref_levels; lev++)
{
mesh.UniformRefinement();
}
// 4. Define a finite element space on the mesh. Here we use the Nedelec
// finite elements of the specified order restricted to 1D, 2D, or 3D
// depending on the dimension of the given mesh file.
FiniteElementCollection *fec = NULL;
if (dim == 1)
{
fec = new ND_R1D_FECollection(order, dim);
}
else if (dim == 2)
{
fec = new ND_R2D_FECollection(order, dim);
}
else
{
fec = new ND_FECollection(order, dim);
}
FiniteElementSpace fespace(&mesh, fec);
int size = fespace.GetTrueVSize();
cout << "Number of H(Curl) unknowns: " << size << endl;
// 5. Determine the list of true essential boundary dofs. In this example,
// the boundary conditions are defined by marking all the boundary
// attributes from the mesh as essential (Dirichlet) and converting them
// to a list of true dofs.
Array<int> ess_tdof_list;
if (mesh.bdr_attributes.Size())
{
Array<int> ess_bdr(mesh.bdr_attributes.Max());
ess_bdr = 1;
fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
}
// 6. Set up the linear form b(.) which corresponds to the right-hand side
// of the FEM linear system, which in this case is (f,phi_i) where f is
// given by the function f_exact and phi_i are the basis functions in
// the finite element fespace.
VectorFunctionCoefficient f(3, f_exact);
LinearForm b(&fespace);
b.AddDomainIntegrator(new VectorFEDomainLFIntegrator(f));
b.Assemble();
// 7. Define the solution vector x as a finite element grid function
// corresponding to fespace. Initialize x by projecting the exact
// solution. Note that only values from the boundary edges will be used
// when eliminating the non-homogeneous boundary condition to modify the
// r.h.s. vector b.
GridFunction sol(&fespace);
VectorFunctionCoefficient E(3, E_exact);
VectorFunctionCoefficient CurlE(3, CurlE_exact);
sol.ProjectCoefficient(E);
// 8. Set up the bilinear form corresponding to the EM diffusion operator
// curl muinv curl + sigma I, by adding the curl-curl and the mass domain
// integrators.
DenseMatrix sigmaMat(3);
sigmaMat(0,0) = 2.0; sigmaMat(1,1) = 2.0; sigmaMat(2,2) = 2.0;
sigmaMat(0,2) = 0.0; sigmaMat(2,0) = 0.0;
sigmaMat(0,1) = M_SQRT1_2; sigmaMat(1,0) = M_SQRT1_2; // 1/sqrt(2) in cmath
sigmaMat(1,2) = M_SQRT1_2; sigmaMat(2,1) = M_SQRT1_2;
ConstantCoefficient muinv(1.0);
MatrixConstantCoefficient sigma(sigmaMat);
BilinearForm a(&fespace);
a.AddDomainIntegrator(new CurlCurlIntegrator(muinv));
a.AddDomainIntegrator(new VectorFEMassIntegrator(sigma));
// 9. Assemble the bilinear form and the corresponding linear system,
// applying any necessary transformations such as: eliminating boundary
// conditions, applying conforming constraints for non-conforming AMR,
// etc.
a.Assemble();
OperatorPtr A;
Vector B, X;
a.FormLinearSystem(ess_tdof_list, sol, b, A, X, B);
// 10. Solve the system A X = B.
#ifndef MFEM_USE_SUITESPARSE
// 11. Define a simple symmetric Gauss-Seidel preconditioner and use it to
// solve the system Ax=b with PCG.
GSSmoother M((SparseMatrix&)(*A));
PCG(*A, M, B, X, 1, 500, 1e-12, 0.0);
#else
// 11. If MFEM was compiled with SuiteSparse, use UMFPACK to solve the
// system.
UMFPackSolver umf_solver;
umf_solver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS;
umf_solver.SetOperator(*A);
umf_solver.Mult(B, X);
#endif
// 12. Recover the solution as a finite element grid function.
a.RecoverFEMSolution(X, b, sol);
// 13. Compute and print the H(Curl) norm of the error.
{
real_t error = sol.ComputeHCurlError(&E, &CurlE);
cout << "\n|| E_h - E ||_{H(Curl)} = " << error << '\n' << endl;
}
// 14. Save the refined mesh and the solution. This output can be viewed
// later using GLVis: "glvis -m refined.mesh -g sol.gf".
{
ofstream mesh_ofs("refined.mesh");
mesh_ofs.precision(8);
mesh.Print(mesh_ofs);
ofstream sol_ofs("sol.gf");
sol_ofs.precision(8);
sol.Save(sol_ofs);
}
// 15. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
VectorGridFunctionCoefficient solCoef(&sol);
CurlGridFunctionCoefficient dsolCoef(&sol);
if (dim ==1)
{
socketstream x_sock(vishost, visport);
socketstream y_sock(vishost, visport);
socketstream z_sock(vishost, visport);
socketstream dy_sock(vishost, visport);
socketstream dz_sock(vishost, visport);
x_sock.precision(8);
y_sock.precision(8);
z_sock.precision(8);
dy_sock.precision(8);
dz_sock.precision(8);
Vector xVec(3); xVec = 0.0; xVec(0) = 1;
Vector yVec(3); yVec = 0.0; yVec(1) = 1;
Vector zVec(3); zVec = 0.0; zVec(2) = 1;
VectorConstantCoefficient xVecCoef(xVec);
VectorConstantCoefficient yVecCoef(yVec);
VectorConstantCoefficient zVecCoef(zVec);
H1_FECollection fec_h1(order, dim);
L2_FECollection fec_l2(order-1, dim);
FiniteElementSpace fes_h1(&mesh, &fec_h1);
FiniteElementSpace fes_l2(&mesh, &fec_l2);
GridFunction xComp(&fes_l2);
GridFunction yComp(&fes_h1);
GridFunction zComp(&fes_h1);
GridFunction dyComp(&fes_l2);
GridFunction dzComp(&fes_l2);
InnerProductCoefficient xCoef(xVecCoef, solCoef);
InnerProductCoefficient yCoef(yVecCoef, solCoef);
InnerProductCoefficient zCoef(zVecCoef, solCoef);
xComp.ProjectCoefficient(xCoef);
yComp.ProjectCoefficient(yCoef);
zComp.ProjectCoefficient(zCoef);
x_sock << "solution\n" << mesh << xComp << flush
<< "window_title 'X component'" << endl;
y_sock << "solution\n" << mesh << yComp << flush
<< "window_geometry 403 0 400 350 "
<< "window_title 'Y component'" << endl;
z_sock << "solution\n" << mesh << zComp << flush
<< "window_geometry 806 0 400 350 "
<< "window_title 'Z component'" << endl;
InnerProductCoefficient dyCoef(yVecCoef, dsolCoef);
InnerProductCoefficient dzCoef(zVecCoef, dsolCoef);
dyComp.ProjectCoefficient(dyCoef);
dzComp.ProjectCoefficient(dzCoef);
dy_sock << "solution\n" << mesh << dyComp << flush
<< "window_geometry 403 375 400 350 "
<< "window_title 'Y component of Curl'" << endl;
dz_sock << "solution\n" << mesh << dzComp << flush
<< "window_geometry 806 375 400 350 "
<< "window_title 'Z component of Curl'" << endl;
}
else if (dim == 2)
{
socketstream xy_sock(vishost, visport);
socketstream z_sock(vishost, visport);
socketstream dxy_sock(vishost, visport);
socketstream dz_sock(vishost, visport);
DenseMatrix xyMat(2,3); xyMat = 0.0;
xyMat(0,0) = 1.0; xyMat(1,1) = 1.0;
MatrixConstantCoefficient xyMatCoef(xyMat);
Vector zVec(3); zVec = 0.0; zVec(2) = 1;
VectorConstantCoefficient zVecCoef(zVec);
MatrixVectorProductCoefficient xyCoef(xyMatCoef, solCoef);
InnerProductCoefficient zCoef(zVecCoef, solCoef);
H1_FECollection fec_h1(order, dim);
ND_FECollection fec_nd(order, dim);
RT_FECollection fec_rt(order-1, dim);
L2_FECollection fec_l2(order-1, dim);
FiniteElementSpace fes_h1(&mesh, &fec_h1);
FiniteElementSpace fes_nd(&mesh, &fec_nd);
FiniteElementSpace fes_rt(&mesh, &fec_rt);
FiniteElementSpace fes_l2(&mesh, &fec_l2);
GridFunction xyComp(&fes_nd);
GridFunction zComp(&fes_h1);
GridFunction dxyComp(&fes_rt);
GridFunction dzComp(&fes_l2);
xyComp.ProjectCoefficient(xyCoef);
zComp.ProjectCoefficient(zCoef);
xy_sock.precision(8);
xy_sock << "solution\n" << mesh << xyComp
<< "window_title 'XY components'\n" << flush;
z_sock << "solution\n" << mesh << zComp << flush
<< "window_geometry 403 0 400 350 "
<< "window_title 'Z component'" << endl;
MatrixVectorProductCoefficient dxyCoef(xyMatCoef, dsolCoef);
InnerProductCoefficient dzCoef(zVecCoef, dsolCoef);
dxyComp.ProjectCoefficient(dxyCoef);
dzComp.ProjectCoefficient(dzCoef);
dxy_sock << "solution\n" << mesh << dxyComp << flush
<< "window_geometry 0 375 400 350 "
<< "window_title 'XY components of Curl'" << endl;
dz_sock << "solution\n" << mesh << dzComp << flush
<< "window_geometry 403 375 400 350 "
<< "window_title 'Z component of Curl'" << endl;
}
else
{
socketstream sol_sock(vishost, visport);
socketstream dsol_sock(vishost, visport);
RT_FECollection fec_rt(order-1, dim);
FiniteElementSpace fes_rt(&mesh, &fec_rt);
GridFunction dsol(&fes_rt);
dsol.ProjectCoefficient(dsolCoef);
sol_sock.precision(8);
sol_sock << "solution\n" << mesh << sol
<< "window_title 'Solution'" << flush << endl;
dsol_sock << "solution\n" << mesh << dsol << flush
<< "window_geometry 0 375 400 350 "
<< "window_title 'Curl of solution'" << endl;
}
}
// 16. Free the used memory.
delete fec;
return 0;
}
void E_exact(const Vector &x, Vector &E)
{
if (dim == 1)
{
E(0) = 1.1 * sin(kappa * x(0) + 0.0 * M_PI);
E(1) = 1.2 * sin(kappa * x(0) + 0.4 * M_PI);
E(2) = 1.3 * sin(kappa * x(0) + 0.9 * M_PI);
}
else if (dim == 2)
{
E(0) = 1.1 * sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI);
E(1) = 1.2 * sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI);
E(2) = 1.3 * sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI);
}
else
{
E(0) = 1.1 * sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI);
E(1) = 1.2 * sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI);
E(2) = 1.3 * sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI);
E *= cos(kappa * x(2));
}
}
void CurlE_exact(const Vector &x, Vector &dE)
{
if (dim == 1)
{
real_t c4 = cos(kappa * x(0) + 0.4 * M_PI);
real_t c9 = cos(kappa * x(0) + 0.9 * M_PI);
dE(0) = 0.0;
dE(1) = -1.3 * c9;
dE(2) = 1.2 * c4;
dE *= kappa;
}
else if (dim == 2)
{
real_t c0 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI);
real_t c4 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI);
real_t c9 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI);
dE(0) = 1.3 * c9;
dE(1) = -1.3 * c9;
dE(2) = 1.2 * c4 - 1.1 * c0;
dE *= kappa * M_SQRT1_2;
}
else
{
real_t s0 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI);
real_t c0 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI);
real_t s4 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI);
real_t c4 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI);
real_t c9 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI);
real_t sk = sin(kappa * x(2));
real_t ck = cos(kappa * x(2));
dE(0) = 1.2 * s4 * sk + 1.3 * M_SQRT1_2 * c9 * ck;
dE(1) = -1.1 * s0 * sk - 1.3 * M_SQRT1_2 * c9 * ck;
dE(2) = -M_SQRT1_2 * (1.1 * c0 - 1.2 * c4) * ck;
dE *= kappa;
}
}
void f_exact(const Vector &x, Vector &f)
{
if (dim == 1)
{
real_t s0 = sin(kappa * x(0) + 0.0 * M_PI);
real_t s4 = sin(kappa * x(0) + 0.4 * M_PI);
real_t s9 = sin(kappa * x(0) + 0.9 * M_PI);
f(0) = 2.2 * s0 + 1.2 * M_SQRT1_2 * s4;
f(1) = 1.2 * (2.0 + kappa * kappa) * s4 +
M_SQRT1_2 * (1.1 * s0 + 1.3 * s9);
f(2) = 1.3 * (2.0 + kappa * kappa) * s9 + 1.2 * M_SQRT1_2 * s4;
}
else if (dim == 2)
{
real_t s0 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI);
real_t s4 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI);
real_t s9 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI);
f(0) = 0.55 * (4.0 + kappa * kappa) * s0 +
0.6 * (M_SQRT2 - kappa * kappa) * s4;
f(1) = 0.55 * (M_SQRT2 - kappa * kappa) * s0 +
0.6 * (4.0 + kappa * kappa) * s4 +
0.65 * M_SQRT2 * s9;
f(2) = 0.6 * M_SQRT2 * s4 + 1.3 * (2.0 + kappa * kappa) * s9;
}
else
{
real_t s0 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI);
real_t c0 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI);
real_t s4 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI);
real_t c4 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI);
real_t s9 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI);
real_t c9 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI);
real_t sk = sin(kappa * x(2));
real_t ck = cos(kappa * x(2));
f(0) = 0.55 * (4.0 + 3.0 * kappa * kappa) * s0 * ck +
0.6 * (M_SQRT2 - kappa * kappa) * s4 * ck -
0.65 * M_SQRT2 * kappa * kappa * c9 * sk;
f(1) = 0.55 * (M_SQRT2 - kappa * kappa) * s0 * ck +
0.6 * (4.0 + 3.0 * kappa * kappa) * s4 * ck +
0.65 * M_SQRT2 * s9 * ck -
0.65 * M_SQRT2 * kappa * kappa * c9 * sk;
f(2) = 0.6 * M_SQRT2 * s4 * ck -
M_SQRT2 * kappa * kappa * (0.55 * c0 + 0.6 * c4) * sk
+ 1.3 * (2.0 + kappa * kappa) * s9 * ck;
}
}