-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathresnet.py
97 lines (76 loc) · 3.01 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import tensorflow as tf
import tensorflow.keras.layers as tfkl
#from tensorflow.keras.models import Sequential
from utilities import ensure_4d
class NormReluConv(tf.keras.Sequential):
"""Norm -> ReLU -> Conv layer."""
def __init__(self, ch, k, s, **kwargs):
"""Downsample frequency by stride."""
layers = [
tfkl.LayerNormalization(),
tfkl.Activation(tf.nn.relu),
tfkl.Conv2D(ch, (k, k), (1, s), padding='same')
]
super().__init__(layers, **kwargs)
class ResidualLayer(tfkl.Layer):
"""A single layer for ResNet, with a bottleneck."""
def __init__(self, ch, stride=1, shortcut=True):
super().__init__(name='ResLayer')
ch_out = 4 * ch
self.shortcut = shortcut
self.norm_input = tfkl.LayerNormalization()
if self.shortcut:
self.conv_proj = tfkl.Conv2D(ch_out, (1, 1), (1, stride), padding='same', name='conv_proj')
layers = [
tfkl.Conv2D(ch, (1, 1), (1, 1), padding='same'),
NormReluConv(ch, 3, stride),
NormReluConv(ch_out, 1, 1),
]
self.bottleneck = tf.keras.Sequential(layers, name='bottleneck')
def call(self, inputs):
x = inputs
r = x
x = ensure_4d(x)
x = tf.nn.relu(self.norm_input(x))
# The projection shortcut should come after the first norm and ReLU
# since it performs a 1x1 convolution.
r = self.conv_proj(x) if self.shortcut else r
x = self.bottleneck(x)
return x + r
class ResidualStack(tfkl.Layer):
"""LayerNorm -> ReLU -> Conv layer."""
def __init__(self,
filters,
block_sizes,
strides,
**kwargs):
super().__init__(**kwargs)
layers = []
for (ch, n_layers, stride) in zip(filters, block_sizes, strides):
# Only the first block per residual_stack uses shortcut and strides.
layers.append(ResidualLayer(ch, stride, shortcut=True))
# Add the additional (n_layers - 1) layers to the stack.
for _ in range(1, n_layers):
layers.append(ResidualLayer(ch, 1, shortcut=False))
layers.append(tfkl.LayerNormalization())
layers.append(tfkl.Activation("relu"))
self.layers = layers
def __call__(self, inputs):
x = inputs
for layer in self.layers:
x = layer(x)
return x
class ResNet(tfkl.Layer):
def __init__(self, ch=32, blocks=[3,4,6], **kwargs): #, use_norm=True
super().__init__(**kwargs)
self.layers = [
tfkl.Conv2D(64, (7, 7), (1, 2), padding='same'),
tfkl.MaxPool2D(pool_size=(1, 3), strides=(1, 2), padding='same'),
ResidualStack([ch, 2*ch, 4*ch], blocks, [1, 2, 2]), #, use_norm
ResidualStack([8 * ch], [3], [2]) #, use_norm
]
def __call__(self, inputs):
x = inputs
for layer in self.layers:
x = layer(x)
return x