-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsynthesizers.py
113 lines (88 loc) · 4.17 KB
/
synthesizers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import tensorflow as tf
from tensorflow.keras import layers as tfkl
from dsp_utils import core
class HarmonicSynthesizer(tfkl.Layer):
def __init__(self,
n_samples=64000,
sample_rate=16000,
scale_fn=core.exp_sigmoid,
normalize_below_nyquist=True,
amp_resample_method='window',
name='harmonic'):
super().__init__(name=name)
self.n_samples = n_samples
self.sample_rate = sample_rate
self.scale_fn = scale_fn
self.normalize_below_nyquist = normalize_below_nyquist
self.amp_resample_method = amp_resample_method
def call(self, inputs):
# get inputs
amplitudes = inputs["amp_out"]
harmonic_distribution = inputs["harmonic_out"]
f0_hz = inputs["f0_hz"]
# Scale the amplitudes for training
if self.scale_fn is not None:
amplitudes = self.scale_fn(amplitudes)
harmonic_distribution = self.scale_fn(harmonic_distribution)
# Bandlimit the harmonic distribution.
if self.normalize_below_nyquist:
n_harmonics = int(harmonic_distribution.shape[-1])
harmonic_frequencies = core.get_harmonic_frequencies(f0_hz,
n_harmonics)
harmonic_distribution = core.remove_above_nyquist(harmonic_frequencies,
harmonic_distribution,
self.sample_rate)
# Normalize
harmonic_distribution /= tf.reduce_sum(harmonic_distribution,
axis=-1,
keepdims=True)
signal = core.harmonic_synthesis(
frequencies=f0_hz,
amplitudes=amplitudes,
harmonic_distribution=harmonic_distribution,
n_samples=self.n_samples,
sample_rate=self.sample_rate,
amp_resample_method=self.amp_resample_method)
return signal
class FilteredNoiseSynthesizer(tfkl.Layer):
def __init__(self,
n_samples=64000,
window_size=257,
scale_fn=core.exp_sigmoid,
initial_bias=-5.0,
name='filtered_noise'):
super().__init__(name=name)
self.n_samples = n_samples
self.window_size = window_size
self.scale_fn = scale_fn
self.initial_bias = initial_bias
def call(self, inputs):
magnitudes = inputs["noise_out"]
if self.scale_fn is not None:
magnitudes = self.scale_fn(magnitudes + self.initial_bias)
batch_size = int(tf.shape(magnitudes)[0])
signal = tf.random.uniform(
[batch_size, self.n_samples], minval=-1.0, maxval=1.0)
return core.frequency_filter(signal,
magnitudes,
window_size=self.window_size)
# Some things look a little changed from the original code
class Reverb(tfkl.Layer):
def __init__(self,
reverb_length=48000,
name='reverb'):
super().__init__(name=name, trainable=True)
self.reverb_length = reverb_length
def build(self, input_shape):
initializer = tf.random_normal_initializer(mean=0, stddev=1e-6)
self.ir = tf.Variable(initial_value=initializer(shape=[self.reverb_length-1], dtype='float32'), trainable=True, name="ir")
self.build = True
def call(self, inputs):
audio = inputs["audio_synth"]
batch_size = int(tf.shape(audio)[0])
ir = tf.repeat(self.ir[tf.newaxis,:], batch_size, axis=0)
#ir = tf.tile(self.ir[tf.newaxis,:], [batch_size, 1])
dry_mask = tf.zeros([int(tf.shape(ir)[0]), 1], tf.float32)
ir = tf.concat([dry_mask, ir], axis=1)
wet = core.fft_convolve(audio, ir, padding='same', delay_compensation=0)
return audio + wet