-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_supervised.py
41 lines (32 loc) · 1.51 KB
/
train_supervised.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import os, argparse, yaml
from train_utils import make_supervised_model, create_callbacks, make_optimizer, make_supervised_dataset_from_config
from dataloader import load_dataset
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Supervised Training Parameters.')
parser.add_argument('-p', '--path', type=str, required=True, help='Path to the model config.')
args = parser.parse_args()
# Read the config
with open(args.path, 'r') as file:
config = dict(yaml.load(file, Loader=yaml.FullLoader))
# Create the datasets or load them
try:
train_set, validation_set, _ = make_supervised_dataset_from_config(config)
except:
train_set, validation_set, _ = load_dataset(config['data']['path'])
print('Dataset created.')
# Create the entire model and define the training
model = make_supervised_model(config)
optimizer = make_optimizer(config)
# Plan the Model Saving and Experiment Tracking
callbacks = create_callbacks(config, monitor='val_spec_loss')
# Save the config for future reference
config['model']['path'] = callbacks[0].save_path
with open(os.path.join(callbacks[0].save_dir, 'model.yaml'), 'w') as f:
yaml.dump(config, f)
# Compile and train
model.compile(optimizer)
print('Model compiled.')
history = model.fit(train_set,
validation_data=validation_set,
callbacks=callbacks,
epochs=config['training']['epochs'])