-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_unsupervised.py
54 lines (42 loc) · 2.09 KB
/
train_unsupervised.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os, argparse, yaml
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.optimizers.schedules import ExponentialDecay
from dataloader import make_unsupervised_dataset, make_nsynth_dataset # ??
from train_utils import create_callbacks, make_unsupervised_model
# DOESN'T WORK AT THE MOMENT
# TODO: nsynth dataset
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Unsupervised Training Parameters.')
parser.add_argument('-p', '--path', type=str, required=True, help='Path to config file.')
args = parser.parse_args()
# Read the config
with open(args.path) as file:
config = dict(yaml.load(file, Loader=yaml.FullLoader))
# Create the datasets and the preprocessor
train_set, validation_set, _ = make_unsupervised_dataset(config['data']['path'],
batch_size=config['training']['batch_size'],
sample_rate=config['data']['sample_rate'])
print('Dataset created.')
# Create the model and define the training
model = make_unsupervised_model(config)
optimizer = Adam(learning_rate=ExponentialDecay(config['optimizer']['lr'],
decay_steps=config['optimizer']['decay_steps'],
decay_rate=config['optimizer']['decay_rate']))
# Model Saving and Experiment Tracking
if config['loss']['type'] == 'spectral':
monitor = 'val_spec_loss'
else:
monitor = 'val_total_loss'
callbacks = create_callbacks(config, monitor)
config['model']['path'] = callbacks[0].save_path
# Save the config for future reference
config_save_fpath = os.path.join(callbacks[0].save_dir, config['run_name']+'.yaml')
with open(config_save_fpath, 'w') as f:
yaml.dump(config, f)
# Compile and train
model.compile(optimizer)
print('Model Compiled.')
history = model.fit(train_set,
validation_data=validation_set,
callbacks=callbacks,
epochs=config['training']['epochs'])