-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwebcam_demo.py
150 lines (123 loc) · 5.53 KB
/
webcam_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#! /usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import division, print_function, absolute_import
import os
from timeit import time
from timeit import default_timer as timer ### to calculate FPS
import warnings
import sys
import cv2
import numpy as np
from PIL import Image
from yolo import YOLO
from deep_sort import preprocessing
from deep_sort import nn_matching
from deep_sort.detection import Detection
from deep_sort.tracker import Tracker
from tools import generate_detections as gdet
from deep_sort.detection import Detection as ddet
warnings.filterwarnings('ignore')
def main(yolo):
# Definition of the parameters
max_cosine_distance = 0.3
nn_budget = None
nms_max_overlap = 1.0
# deep_sort
model_filename = 'model_data/mars-small128.pb'
encoder = gdet.create_box_encoder(model_filename,batch_size=1)
metric = nn_matching.NearestNeighborDistanceMetric("cosine", max_cosine_distance, nn_budget)
tracker = Tracker(metric)
#video_path ="C:/Users/Rashid Ali/Desktop/Person counting/V05.mp4"
writeVideo_flag = True
video_capture = cv2.VideoCapture(0)
if writeVideo_flag:
# Define the codec and create VideoWriter object
video_width = int(video_capture.get(3))
video_height = int(video_capture.get(4))
video_fps = int(video_capture.get(5))
video_size = (int(video_width), int(video_height))
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
out = cv2.VideoWriter('output_V09.mp4', fourcc, video_fps, video_size)
list_file = open('detection_v2 .txt', 'w')
frame_index = -1
fps = 0.0
while True:
ret, frame = video_capture.read() # frame shape 640*480*3
if ret != True:
break
t1 = time.time()
# image = Image.fromarray(frame)
image = Image.fromarray(frame[...,::-1]) #bgr to rgb
boxs = yolo.detect_image(image)
# print("box_num",len(boxs))
features = encoder(frame,boxs)
# score to 1.0 here).
detections = [Detection(bbox, 1.0, feature) for bbox, feature in zip(boxs, features)]
# Run non-maxima suppression.
boxes = np.array([d.tlwh for d in detections])
scores = np.array([d.confidence for d in detections])
indices = preprocessing.non_max_suppression(boxes, nms_max_overlap, scores)
detections = [detections[i] for i in indices]
# Call the tracker
tracker.predict()
tracker.update(detections)
'''
for track in tracker.tracks:
if not track.is_confirmed() or track.time_since_update > 1:
continue
bbox = track.to_tlbr()
cv2.rectangle(frame, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])),(255,255,255), 2)
cv2.putText(frame, str(track.track_id),(int(bbox[0]), int(bbox[1])),0, 5e-3 * 200, (0,255,0),2)
'''
person_count=0
count1=0
for track in tracker.tracks:
if not track.is_confirmed() or track.time_since_update > 1:
continue
person_count = person_count+1
track_id = '{} {:.1f}'.format('Track_ID', track.track_id)
count1 = '{} {:.1f}'.format('Total Persons Count', person_count)
bbox = track.to_tlbr()
cv2.rectangle(frame, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])),(255,255,255), 2)
cv2.putText(frame, str(track_id),(int(bbox[0]), int(bbox[1])),0, 5e-3 * 100, (0,255,0),2)
cv2.putText(frame, str(count1), (20, 50), 0, 5e-3 * 100 , (247, 7, 7), 2)
cv2.putText(frame, '{:.2f}ms'.format((time.time() -t1) * 1000), (20, 20), fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=0.5, color=(247, 7, 7), thickness=1)
cv2.imshow('Detections Window', frame)
'''
#cv2.namedWindow("Detections Window", cv2.WINDOW_AUTOSIZE)
#cv2.rectangle(frame,(int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])),(247, 7, 7), 1)
#cv2.putText(frame, str(count), (int(bbox[0]), int(bbox[1])), fontFace=cv2.FONT_HERSHEY_COMPLEX,
# fontScale=0.5, color=(247, 7, 7), thickness=1)
person_count=0
count1=0
for det in detections:
person_count = person_count+1
count = '{} {:.1f}'.format('Count', person_count)
count1 = '{} {:.1f}'.format('Total Count', person_count)
bbox = det.to_tlbr()
cv2.rectangle(frame,(int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])),(247, 7, 7), 2)
cv2.putText(frame, str(count), (int(bbox[0]), int(bbox[1])), fontFace=cv2.FONT_HERSHEY_COMPLEX,
fontScale=0.5, color=(247, 7, 7), thickness=2)
'''
if writeVideo_flag:
# save a frame
print("Writing detections in file")
out.write(frame)
frame_index = frame_index + 1
list_file.write(str(frame_index)+' ')
if len(boxs) != 0:
for i in range(0,len(boxs)):
list_file.write(str(boxs[i][0]) + ' '+str(boxs[i][1]) + ' '+str(boxs[i][2]) + ' '+str(boxs[i][3]) + ' ')
list_file.write(str(person_count)+'\n')
fps = ( fps + (1./(time.time()-t1)) ) / 2
print("fps= %f"%(fps))
# Press Q to stop!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video_capture.release()
if writeVideo_flag:
out.release()
list_file.close()
cv2.destroyAllWindows()
if __name__ == '__main__':
main(YOLO())