-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
58 lines (40 loc) · 1.35 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on june 22 23:16:54 2018
@author: aman, bhanu
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
dataset = pd.read_csv("features.csv")
# from sklearn.preprocessing import Imputer
# imputer = Imputer(missing_values = "NaN", strategy = "mean", axis = 0)
# imputer = imputer.fit(x[:,1:])
# x[:,1:] = imputer.transform(x[:,1:])
x = dataset.iloc[:,0:3]
y = dataset.iloc[:,3:4]
print(y)
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
LabelEncoder_y = LabelEncoder()
y = LabelEncoder_y.fit_transform(y)
onehotencoder = OneHotEncoder(categorical_features = [0])
y = onehotencoder.fit_transform(y).toarray()
y = y.reshape((1600,1))
from sklearn.cross_validation import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 0)
y_act = y_test
from sklearn.preprocessing import StandardScaler
sc_x = StandardScaler()
sc_y = StandardScaler()
x_train = sc_x.fit_transform(x_train)
x_test = sc_x.fit_transform(x_test)
#y_test = sc_y.fit_transform(y_test)
#y_train = sc_y.fit_transform(y_train)
from sklearn.ensemble import RandomForestRegressor
regressor = RandomForestRegressor(n_estimators = 1000, random_state = 0)
regressor.fit(x_train, y_train)
#print(y_test)
y_pred = (regressor.predict(x_test))
print(y_pred)
print(y_test)