-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathstable-internships.py
93 lines (86 loc) · 3.49 KB
/
stable-internships.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Stable Internships
# 🟠 Medium
#
# https://www.algoexpert.io/questions/stable-internships
#
# Tags: Famous Algorithms - Gale–Shapley
import timeit
from typing import List
# This problem is asking us to implement the Gale-Shapley algorithm:
# https://en.wikipedia.org/wiki/Gale–Shapley_algorithm
#
# Time complexity: O(n^2) - Where n is the number of interns/teams.
# Space complexity: O(n) - The next_apply_at and teams dictionaries and
# the free interns set all use O(n) extra memory.
class Solution:
def stableInternships(self, interns, teams) -> List[int]:
n = len(interns)
team_dict = {i: None for i in range(n)}
next_apply_at = {i: 0 for i in range(n)}
free_interns = {i for i in range(n)}
while free_interns:
intern = free_interns.pop()
for idx in range(next_apply_at[intern], n):
# We are applying to this company, do not apply again.
next_apply_at[intern] = idx + 1
team = interns[intern][idx]
# This team has not found an intern yet, match them.
if team_dict[team] is None:
team_dict[team] = intern
break # Break out of matching this intern.
else:
# The team has an intern already, check if they
# would prefer to have this intern instead.
team_current_intern = team_dict[team]
team_preferences = teams[team]
if team_preferences.index(intern) < team_preferences.index(
team_current_intern
):
# The current intern becomes free.
free_interns.add(team_current_intern)
# Match this team with this intern.
team_dict[team] = intern
break # Break out of matching this intern.
return [[intern, team] for team, intern in team_dict.items()]
def test():
executors = [Solution]
tests = [
[[[1, 0], [0, 1]], [[0, 1], [1, 0]], [[0, 1], [1, 0]]],
[
[[0, 1, 2], [2, 1, 0], [1, 2, 0]],
[[2, 1, 0], [0, 1, 2], [0, 2, 1]],
[[0, 0], [1, 2], [2, 1]],
],
[
[[0, 1, 2], [1, 0, 2], [1, 2, 0]],
[[2, 1, 0], [1, 2, 0], [0, 2, 1]],
[[0, 0], [1, 1], [2, 2]],
],
[
[[0, 1, 2, 3], [0, 1, 3, 2], [0, 2, 3, 1], [0, 2, 3, 1]],
[[1, 3, 2, 0], [0, 1, 2, 3], [1, 3, 2, 0], [3, 0, 2, 1]],
[[0, 1], [1, 0], [2, 3], [3, 2]],
],
[
[[0, 1, 2, 3], [2, 1, 3, 0], [0, 2, 3, 1], [3, 1, 0, 2]],
[[1, 3, 2, 0], [0, 1, 2, 3], [1, 2, 3, 0], [3, 0, 2, 1]],
[[0, 1], [1, 2], [2, 0], [3, 3]],
],
]
for executor in executors:
start = timeit.default_timer()
for _ in range(1):
for col, t in enumerate(tests):
sol = executor()
result = sorted(sol.stableInternships(t[0], t[1]))
exp = sorted(t[2])
assert result == exp, (
f"\033[93m» {result} <> {exp}\033[91m for"
+ f" test {col} using \033[1m{executor.__name__}"
)
stop = timeit.default_timer()
used = str(round(stop - start, 5))
cols = "{0:20}{1:10}{2:10}"
res = cols.format(executor.__name__, used, "seconds")
print(f"\033[92m» {res}\033[0m")
test()