diff --git a/examples/shaders/resources/shaders/glsl100/pbr.fs b/examples/shaders/resources/shaders/glsl100/pbr.fs
index 70e3b4885a25..a9cf1a3e0c1f 100644
--- a/examples/shaders/resources/shaders/glsl100/pbr.fs
+++ b/examples/shaders/resources/shaders/glsl100/pbr.fs
@@ -59,97 +59,104 @@ uniform float ambient;
 // incrase reflectivity when surface view at larger angle
 vec3 schlickFresnel(float hDotV,vec3 refl)
 {
-        return refl + (1.0 - refl) * pow(1.0 - hDotV,5.0);
+    return refl + (1.0 - refl)*pow(1.0 - hDotV,5.0);
 }
 
-float ggxDistribution(float nDotH,float roughness)
+float ggxDistribution(float nDotH, float roughness)
 {
-        float a = roughness * roughness * roughness * roughness;
-        float d = nDotH * nDotH * (a - 1.0) + 1.0;
-        d = PI * d * d;
-        return a / max(d,0.0000001);
+    float a = roughness*roughness*roughness*roughness;
+    float d = nDotH*nDotH*(a - 1.0) + 1.0;
+    d = PI*d*d;
+    return a/max(d,0.0000001);
 }
 
-float geomSmith(float nDotV,float nDotL,float roughness)
+float geomSmith(float nDotV, float nDotL, float roughness)
 {
-        float r = roughness + 1.0;
-        float k = r * r / 8.0;
-        float ik = 1.0 - k;
-        float ggx1 = nDotV / (nDotV * ik + k);
-        float ggx2 = nDotL / (nDotL * ik + k);
-        return ggx1 * ggx2;
+    float r = roughness + 1.0;
+    float k = r*r/8.0;
+    float ik = 1.0 - k;
+    float ggx1 = nDotV/(nDotV*ik + k);
+    float ggx2 = nDotL/(nDotL*ik + k);
+    return ggx1*ggx2;
 }
 
-vec3 pbr(){
-        vec3 albedo = texture2D(albedoMap,vec2(fragTexCoord.x*tiling.x+offset.x,fragTexCoord.y*tiling.y+offset.y)).rgb;
-        albedo = vec3(albedoColor.x*albedo.x,albedoColor.y*albedo.y,albedoColor.z*albedo.z);
-        float metallic = clamp(metallicValue,0.0,1.0);
-        float roughness = clamp(roughnessValue,0.0,1.0);
-        float ao = clamp(aoValue,0.0,1.0);
-        if(useTexMRA == 1) {
-            vec4 mra = texture2D(mraMap, vec2(fragTexCoord.x * tiling.x + offset.x, fragTexCoord.y * tiling.y + offset.y));
-            metallic = clamp(mra.r+metallicValue,0.04,1.0);
-            roughness = clamp(mra.g+roughnessValue,0.04,1.0);
-            ao = (mra.b+aoValue)*0.5;
-        }
-
-
-
-        vec3 N = normalize(fragNormal);
-        if(useTexNormal == 1) {
-            N = texture2D(normalMap, vec2(fragTexCoord.x * tiling.x + offset.y, fragTexCoord.y * tiling.y + offset.y)).rgb;
-            N = normalize(N * 2.0 - 1.0);
-            N = normalize(N * TBN);
-        }
-        
-        vec3 V = normalize(viewPos - fragPosition);
+vec3 pbr()
+{
+    vec3 albedo = texture2D(albedoMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y)).rgb;
+    albedo = vec3(albedoColor.x*albedo.x, albedoColor.y*albedo.y, albedoColor.z*albedo.z);
+    
+    float metallic = clamp(metallicValue, 0.0, 1.0);
+    float roughness = clamp(roughnessValue, 0.0, 1.0);
+    float ao = clamp(aoValue, 0.0, 1.0);
+    
+    if (useTexMRA == 1)
+    {
+        vec4 mra = texture2D(mraMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y));
+        metallic = clamp(mra.r + metallicValue, 0.04, 1.0);
+        roughness = clamp(mra.g + roughnessValue, 0.04, 1.0);
+        ao = (mra.b + aoValue)*0.5;
+    }
+
+    vec3 N = normalize(fragNormal);
+    if (useTexNormal == 1)
+    {
+        N = texture2D(normalMap, vec2(fragTexCoord.x*tiling.x + offset.y, fragTexCoord.y*tiling.y + offset.y)).rgb;
+        N = normalize(N*2.0 - 1.0);
+        N = normalize(N*TBN);
+    }
+    
+    vec3 V = normalize(viewPos - fragPosition);
+    
+    vec3 e = vec3(0);
+    e = (texture2D(emissiveMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y)).rgb).g*emissiveColor.rgb*emissivePower*float(useTexEmissive);
+    
+    // return N;//vec3(metallic,metallic,metallic);
+    // If  dia-electric use base reflectivity of 0.04 otherwise ut is a metal use albedo as base reflectivity
+    vec3 baseRefl = mix(vec3(0.04), albedo.rgb, metallic);
+    vec3 Lo = vec3(0.0);  // Acumulate lighting lum
+
+    for (int i = 0; i < 4; i++)
+    {
+        vec3 L = normalize(lights[i].position - fragPosition);  // Compute light vector
+        vec3 H = normalize(V + L);                              // Compute halfway bisecting vector
+        float dist = length(lights[i].position - fragPosition); // Compute distance to light
+        float attenuation = 1.0/(dist*dist*0.23);               // Compute attenuation
+        vec3 radiance = lights[i].color.rgb*lights[i].intensity*attenuation; // Compute input radiance, light energy comming in
+
+        // Cook-Torrance BRDF distribution function
+        float nDotV = max(dot(N,V), 0.0000001);
+        float nDotL = max(dot(N,L), 0.0000001);
+        float hDotV = max(dot(H,V), 0.0);
+        float nDotH = max(dot(N,H), 0.0);
+        float D = ggxDistribution(nDotH, roughness); // Larger the more micro-facets aligned to H
+        float G = geomSmith(nDotV, nDotL, roughness); // Smaller the more micro-facets shadow
+        vec3 F = schlickFresnel(hDotV, baseRefl); // Fresnel proportion of specular reflectance
+
+        vec3 spec = (D*G*F)/(4.0*nDotV*nDotL);
         
-        vec3 e = vec3(0);
-        e = (texture2D(emissiveMap, vec2(fragTexCoord.x*tiling.x+offset.x, fragTexCoord.y*tiling.y+offset.y)).rgb).g * emissiveColor.rgb*emissivePower * float(useTexEmissive);
+        // Difuse and spec light can't be above 1.0
+        // kD = 1.0 - kS  diffuse component is equal 1.0 - spec comonent
+        vec3 kD = vec3(1.0) - F;
         
-        //return N;//vec3(metallic,metallic,metallic);
-        //if  dia-electric use base reflectivity of 0.04 otherwise ut is a metal use albedo as base reflectivity
-        vec3 baseRefl = mix(vec3(0.04),albedo.rgb,metallic);
-        vec3 Lo = vec3(0.0);  // acumulate lighting lum
-
-        for(int i=0;i<4;++i){
-
-            vec3 L = normalize(lights[i].position - fragPosition);  // calc light vector
-            vec3 H = normalize(V + L);                              // calc halfway bisecting vector
-            float dist = length(lights[i].position - fragPosition); // calc distance to light
-            float attenuation = 1.0 / (dist * dist * 0.23);                // calc attenuation
-            vec3 radiance = lights[i].color.rgb * lights[i].intensity * attenuation;         // calc input radiance,light energy comming in
-
-            //Cook-Torrance BRDF distribution function
-            float nDotV = max(dot(N,V),0.0000001);
-            float nDotL = max(dot(N,L),0.0000001);
-            float hDotV = max(dot(H,V),0.0);
-            float nDotH = max(dot(N,H),0.0);
-            float D = ggxDistribution(nDotH,roughness); // larger the more micro-facets aligned to H
-            float G = geomSmith(nDotV,nDotL,roughness); // smaller the more micro-facets shadow
-            vec3 F = schlickFresnel(hDotV, baseRefl);  // fresnel proportion of specular reflectance
-
-            vec3 spec = (D * G * F) / (4.0 * nDotV * nDotL);
-            // difuse and spec light can't be above 1.0
-            // kD = 1.0 - kS  diffuse component is equal 1.0 - spec comonent
-            vec3 kD = vec3(1.0) - F;
-            //mult kD by the inverse of metallnes , only non-metals should have diffuse light
-            kD *= 1.0 - metallic;
-            Lo += ((kD * albedo.rgb / PI + spec) * radiance * nDotL)*float(lights[i].enabled); // angle of light has impact on result
-        }
-        vec3 ambient_final = (ambientColor + albedo)* ambient * 0.5;
-        return ambient_final+Lo*ao+e;
+        // Mult kD by the inverse of metallnes , only non-metals should have diffuse light
+        kD *= 1.0 - metallic;
+        Lo += ((kD*albedo.rgb/PI + spec)*radiance*nDotL)*float(lights[i].enabled); // Angle of light has impact on result
+    }
+    
+    vec3 ambientFinal = (ambientColor + albedo)*ambient*0.5;
+    
+    return (ambientFinal + Lo*ao + e);
 }
 
 void main()
 {
-       vec3 color = pbr();
-        
-        //HDR tonemapping
-        color = pow(color,color + vec3(1.0));
-        //gamma correction
-        color = pow(color,vec3(1.0/2.2));
-
-        gl_FragColor = vec4(color,1.0);
-        
+   vec3 color = pbr();
+    
+    // HDR tonemapping
+    color = pow(color,color + vec3(1.0));
+    
+    // Gamma correction
+    color = pow(color,vec3(1.0/2.2));
+
+    gl_FragColor = vec4(color,1.0);
 }
diff --git a/examples/shaders/resources/shaders/glsl100/pbr.vs b/examples/shaders/resources/shaders/glsl100/pbr.vs
index 87e142e07a46..5a93f784f308 100644
--- a/examples/shaders/resources/shaders/glsl100/pbr.vs
+++ b/examples/shaders/resources/shaders/glsl100/pbr.vs
@@ -26,17 +26,17 @@ const float normalOffset = 0.1;
 // https://github.com/glslify/glsl-inverse
 mat3 inverse(mat3 m)
 {
-  float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2];
-  float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2];
-  float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2];
+    float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2];
+    float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2];
+    float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2];
 
-  float b01 = a22*a11 - a12*a21;
-  float b11 = -a22*a10 + a12*a20;
-  float b21 = a21*a10 - a11*a20;
+    float b01 = a22*a11 - a12*a21;
+    float b11 = -a22*a10 + a12*a20;
+    float b21 = a21*a10 - a11*a20;
 
-  float det = a00*b01 + a01*b11 + a02*b21;
+    float det = a00*b01 + a01*b11 + a02*b21;
 
-  return mat3(b01, (-a22*a01 + a02*a21), (a12*a01 - a02*a11),
+    return mat3(b01, (-a22*a01 + a02*a21), (a12*a01 - a02*a11),
               b11, (a22*a00 - a02*a20), (-a12*a00 + a02*a10),
               b21, (-a21*a00 + a01*a20), (a11*a00 - a01*a10))/det;
 }
@@ -44,14 +44,13 @@ mat3 inverse(mat3 m)
 // https://github.com/glslify/glsl-transpose
 mat3 transpose(mat3 m)
 {
-  return mat3(m[0][0], m[1][0], m[2][0],
+    return mat3(m[0][0], m[1][0], m[2][0],
               m[0][1], m[1][1], m[2][1],
               m[0][2], m[1][2], m[2][2]);
 }
 
 void main()
 {
-
     // calc binormal from vertex normal and tangent
     vec3 vertexBinormal = cross(vertexNormal, vertexTangent);
     // calc fragment normal based on normal transformations