-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathrb_EEG_Network.m
236 lines (194 loc) · 8.55 KB
/
rb_EEG_Network.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
% function to compute various BCT/graph metric on a set of adjacency matrices
function [Results] = rb_EEG_Network(matrices, subids, path2save, step, costlimit, nRand, prefix, TAKEABS)
% matrices - 3D matrix of subs*nodes*nodes
% subids - list of subject ID's (or filenames)
% path2save - directory where to store the output
% step - the number of edges to add at each 'step' before recalculating the
% network measures. This will set the density of datapoints on the curves in
% the final result
% mask - 1D vector of grouplabels/subject indices
% 1=control 2=patient, might be useful later on
% costlimit - highest cost to loop over
% nRand - number of random matrices to create for normalization
% prefix - prefix for filenaming
% TAKEABS - use binary matrices
%[Results] = rb_EEG_Network(matrices, subids, '', 10, 0.3, 100, 'Net_', 1);
for isub = 1:size(matrices,1)
sep = strfind(subids(isub,:),'.'); % get the name seperator
name = subids(isub,:);
s.filename = name(1:sep-1);
ConnMat = squeeze(matrices(isub,:,:));
ConnMat = rb_makeSymmetric(ConnMat);
%Declare the variables to store all measures that will be used
s.cost=[]; s.k=[]; s.a=[]; s.arand=[]; s.M=[]; s.Mrand=[];
s.C=[]; s.Crand=[]; s.L=[]; s.Lrand=[]; s.Sigma=[];
s.E=[]; s.Erand=[]; s.CE=[]; s.CErand=[];
s.Diam=[]; s.Diamrand=[]; s.Bass=[]; s.Bassrand=[];
A=[]; R=[];
%Take absolute value of Correlations and set diagonal to ones:
n=size(ConnMat,1);
if TAKEABS
ConnMat=abs(ConnMat); %%%%%%%%%%%%%%%%%%%%%%%%% TAKING ABS VALUE
end
ConnMat(1:n+1:n*n)=1; %%%%%%%%%%%%%%%%%%%%%%%%% ONES ON DIAGONAL
Results{isub}.ConnMat = ConnMat; % store correlation matrix
%% compute some inter and intra hemisphere connections
% select left and righ electrodes
left = [1:27];
right = [34:36 39:46 49:64];
% compute interhemisheric connectitivy
Results{isub}.InterAdj = mean(mean(abs(ConnMat(left,right))));
Results{isub}.IntraL = mean(mean(abs(ConnMat(left,left))));
Results{isub}.IntraR = mean(mean(abs(ConnMat(right,right))));
%Create MST (the minimum spanning tree of the network
disp('Calculating MST');
MST=kruskal_mst(sparse(sqrt(2*(1-ConnMat))));
ConnMat=triu(ConnMat,1);
ind = find(ConnMat+triu(ones(n,n),1)); %%%TRICK: necessary in case there are zeros in the matrix
Clist = ConnMat(ind);
Cnonz = length(Clist);
[ClistSort, IX] = sort(Clist,'descend');
[row col]=ind2sub([n,n],ind(IX));
dd= length(Clist);
%Store Initial MST in the adjacency matrix A that defines the network
A=full(MST);
[i,j]=find(MST);
for m=1:length(i)
A(i(m),j(m))= 1; %ConnMat(i(m),j(m)); %(NOT) WEIGHTED VERSION
A(j(m),i(m))= 1; %ConnMat(i(m),j(m)); %(NOT) WEIGHTED VERISON
end % for m
%find corresponding random matrix R
R=randmio_und_connected(A, nRand);
%Start Growing the network according to weights in ConnMat matrix and record Network Measures
%after each edge addition
%Initially, with just the MST: set counters and calculate cost and all measures
t=1;
enum=n-1;
g = 1;
s.cost(g)=enum/(n*(n-1));
%% gmeasure;
%calculate measures
%%%%%%%%%%% Degrees
deg=degrees_und(A);
degr=degrees_und(R);
s.k(g)=mean(deg);
%%%%%%%%%%%% Assortativity
s.a(g)=assortativity_bin(A,0); %weights are discarded even if they exist
s.arand(g)=assortativity_bin(R,0);
%%%%%%%%%%%% Modularity
[Com s.M(g)]=modularity_und(A);
[Comr s.Mrand(g)]=modularity_und(R);
%%%%%%%%%%%% Clustering
s.C(g)=mean(clustering_coef_bu(A));
s.Crand(g)=mean(clustering_coef_bu(R));
%%%%%%%%%%%% Betweeness-Centrality
s.bc(g) = mean(betweenness_bin(A));
s.bcrand(g) = mean(betweenness_bin(R));
%%%%%%%%%%%% Distance matrix
Dist=distance_bin(A);
DistRand=distance_bin(R);
%%%%%%%%%%%% Path Length
s.L(g)=mean(mean(Dist))*n/(n-1);
s.Lrand(g)=mean(mean(DistRand))*n/(n-1);
%%%%%%%%%%%%% Small-World Coefficient
s.Sigma(g)=(s.C(g)./s.Crand(g))./(s.L(g)./s.Lrand(g));
%%%%%%%%%%%%% Efficiency
s.E(g)=efficiency_bin(A);
s.Erand(g)=efficiency_bin(R);
%%%%%%%%%%%% Cost-Efficiency
s.CE(g)=s.E(g)-s.cost(g);
s.CErand(g)=s.Erand(g)-s.cost(g);
%%%%%%%%%%%%
%Now add edges in correct order until all possible edges exist
disp('Starting with MST and adding edges over a range of Costs');
while (enum < costlimit*n*(n-1)/2)
enum;
% if edge wasn't initially included in MST
if A(row(t),col(t)) == 0
%add edge
A(row(t),col(t)) = 1; %ConnMat(row(t),col(t)); %NOT WEIGHTED VERSION
A(col(t),row(t)) = 1; %ConnMat(row(t),col(t)); %NOT WEIGHTED VERSION
enum=enum+1;
if mod(enum, step) == 0
%find corresponding R matrix
R = randmio_und_connected(A, 10);
%Increment counter
g = g + 1;
%calculate cost
s.cost(g)=2*enum/(n*(n-1));
disp(sprintf('Working on cost = %f',s.cost(g)));
%Call function that calculates all measures
%%gmeasure; %%THIS FUNCTION CALCULATES THE MEASURES WE WANT
%calculate measures
%%%%%%%%%%% Degrees
deg=degrees_und(A);
degr=degrees_und(R);
s.deg(g,:) = deg;
s.k(g)=mean(deg);
%%%%%%%%%%%% Assortativity
s.a(g)=assortativity_bin(A,0); %weights are discarded even if they exist
s.arand(g)=assortativity_bin(R,0);
%%%%%%%%%%%% Modularity
[Com s.M(g)]=modularity_und(A);
[Comr s.Mrand(g)]=modularity_und(R);
%%%%%%%%%%%% Clustering
s.C(g)=mean(clustering_coef_bu(A));
s.Crand(g)=mean(clustering_coef_bu(R));
%%%%%%%%%%%% Betweeness-Centrality
s.bc(g) = mean(betweenness_bin(A));
s.bcrand(g) = mean(betweenness_bin(R));
%%%%%%%%%%%% Distance matrix
Dist=distance_bin(A);
DistRand=distance_bin(R);
%%%%%%%%%%%% Path Length
s.L(g)=mean(mean(Dist))*n/(n-1);
s.Lrand(g)=mean(mean(DistRand))*n/(n-1);
%%%%%%%%%%%%% Small-World Coefficient
s.Sigma(g)=(s.C(g)./s.Crand(g))./(s.L(g)./s.Lrand(g));
%%%%%%%%%%%%% Efficiency
s.E(g)=efficiency_bin(A);
s.Erand(g)=efficiency_bin(R);
%%%%%%%%%%%% Cost-Efficiency
s.CE(g)=s.E(g)-s.cost(g);
s.CErand(g)=s.Erand(g)-s.cost(g);
%%%%%%%%%%%%
end % if mod(enum, step) == 0
end % if A(row(t),col(t)) == 0
t=t+1;
end % while
%% Save
%Transfer the structure containing the measures into a correctly named
%variable for saving.
disp('Saving Results');
eval(sprintf('Net_Results_%s = s;',prefix));
%Save the structure in a .mat file
fname = fullfile(path2save,strcat(prefix,s.filename,'mat'));
save(fname,'s');
Results{isub}.s = s;
Combined.cost = s.cost;
Combined.deg(isub,:) = s.k;
Combined.locdeg(isub,:,:) = s.deg;
Combined.a(isub,:) = s.a;
Combined.arand(isub,:) = s.arand;
Combined.L(isub,:) = s.L;
Combined.Lrand(isub,:) = s.Lrand;
Combined.M(isub,:) = s.M;
Combined.Mrand(isub,:) = s.Mrand;
Combined.E(isub,:) = s.E;
Combined.Erand(isub,:) = s.Erand;
Combined.CE(isub,:) = s.CE;
Combined.CErand(isub,:) = s.CErand;
Combined.bc(isub,:) = s.bc;
Combined.bcrand(isub,:) = s.bcrand;
Combined.C(isub,:) = s.C;
Combined.Crand(isub,:) = s.Crand;
Combined.SW(isub,:) = s.Sigma;
Combined.InterAdj(isub,:) = mean(mean(ConnMat(left,right)));
Combined.IntraL(isub,:) = mean(mean(ConnMat(left,left)));
Combined.IntraR(isub,:) = mean(mean(ConnMat(right,right)));
end
savename = fullfile(path2save,strcat(prefix,'Results.mat'));
save(savename,'Results');
savename = fullfile(path2save,strcat(prefix,'ResultsCombined.mat'));
save(savename,'Combined');
end