-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathExtendedData6.Rmd
142 lines (111 loc) · 6.18 KB
/
ExtendedData6.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
title: "Plots_for_ExtendedData6"
author: "Rebecca_Ansorge"
date: "July 14, 2019"
output: html_document
editor_options:
chunk_output_type: console
---
```{r}
### load libraries
library(Hmisc)
library(ggplot2)
library(data.table)
library(grid)
library(gridExtra)
```
```{r calculate correlations Fst.sizediff}
# correlation of FST with mussel size difference
Fst.size <- read.csv('/PATH/Fst.size.cor.list', sep="\t")
Fst.size.baz <- Fst.size[1:10,1:2]
Fst.size.bput <- Fst.size[11:13,1:2]
Fst.size.clue <- Fst.size[14:23,1:2]
Fst.size.lilli <- Fst.size[24:33,1:2]
# calculates correlation coefficient R and correlation p-value
corall <- rcorr(as.matrix(Fst.size), type="spearman")
corbaz <- rcorr(as.matrix(Fst.size.baz), type="spearman")
#corbput <- rcorr(as.matrix(Fst.size.bput), type="spearman") 3 is not enough for stats
corclue <- rcorr(as.matrix(Fst.size.clue), type="spearman")
corlilli <- rcorr(as.matrix(Fst.size.lilli), type="spearman")
# print r and p values
corall$r # print corr. coefficient
corall$P # print corr. p-value
corbaz$r # print corr. coefficient
corbaz$P # print corr. p-value
corclue$r # print corr. coefficient
corclue$P # print corr. p-value
corlilli$r # print corr. coefficient
corlilli$P # print corr. p-value
Fst.plot.size <- read.csv('/PATH/Fst.size.cor.labels.list', sep="\t")
Fst.size.l.baz <- Fst.plot.size[1:10,1:4]
Fst.size.l.bput <- Fst.plot.size[11:13,1:4]
Fst.size.l.clue <- Fst.plot.size[14:23,1:4]
Fst.size.l.lilli <- Fst.plot.size[24:33,1:4]
```
```{r calculate correlations SNP.size}
# correlation of SNP with mussel size
SNPs.size.abs <- read.csv('/PATH/snps.size.absol.cor.list', sep="\t")
SNPs.abs.bput <- SNPs.size.abs[2:4,1:2]
SNPs.abs.clue <- SNPs.size.abs[5:9,1:2]
SNPs.abs.baz <- SNPs.size.abs[10:14,1:2]
SNPs.abs.lilli <- SNPs.size.abs[15:20,1:2]
# calculates correlation coefficient R and correlation p-value
corbaz.abs <- rcorr(as.matrix(SNPs.abs.baz), type="spearman")
corbput.abs <- rcorr(as.matrix(SNPs.abs.bput), type="spearman")
corclue.abs <- rcorr(as.matrix(SNPs.abs.clue), type="spearman")
corlilli.abs <- rcorr(as.matrix(SNPs.abs.lilli), type="spearman")
corbaz.abs$r # print corr. coefficient
corbaz.abs$P # print corr. p-value
corbput.abs$r # print corr. coefficient
corbput.abs$P # print corr. p-value
corclue.abs$r # print corr. coefficient
corclue.abs$P # print corr. p-value
corlilli.abs$r # print corr. coefficient
corlilli.abs$P # print corr. p-value
SNPs.plot.abs <- read.csv('/PATH/snps.size.absol.cor.list', sep="\t")
```
```{r calculate correlations Fst.sizesum}
# correlation of FST with mussel size sum
Fst.sizesum <- read.csv('/PATH/Fst.sizesum.cor.list', sep="\t")
Fst.sizesum.baz <- Fst.sizesum[1:10,1:2]
Fst.sizesum.bput <- Fst.sizesum[11:13,1:2]
Fst.sizesum.clue <- Fst.sizesum[14:23,1:2]
Fst.sizesum.lilli <- Fst.sizesum[24:33,1:2]
# calculates correlation coefficient R and correlation p-value
corallsum <- rcorr(as.matrix(Fst.sizesum), type="spearman")
corbazsum <- rcorr(as.matrix(Fst.sizesum.baz), type="spearman")
#corbput <- rcorr(as.matrix(Fst.size.bput), type="spearman") 3 is not enough for stats
corcluesum <- rcorr(as.matrix(Fst.sizesum.clue), type="spearman")
corlillisum <- rcorr(as.matrix(Fst.sizesum.lilli), type="spearman")
# print r and p values
corallsum$r # print corr. coefficient
corallsum$P # print corr. p-value
corbazsum$r # print corr. coefficient
corbazsum$P # print corr. p-value
corcluesum$r # print corr. coefficient
corcluesum$P # print corr. p-value
corlillisum$r # print corr. coefficient
corlillisum$P # print corr. p-value
Fst.plot.sizesum <- read.csv('/PATH/Fst.sizesum.cor.labels.list', sep="\t")
Fst.sizesum.l.baz <- Fst.plot.sizesum[1:10,1:4]
Fst.sizesum.l.bput <- Fst.plot.sizesum[11:13,1:4]
Fst.sizesum.l.clue <- Fst.plot.sizesum[14:23,1:4]
Fst.sizesum.l.lilli <- Fst.plot.sizesum[24:33,1:4]
```
```{r plotting correlaions}
# combiplot Extended Data 6 - split plot according to site
Fs.plot <- ggplot(Fst.plot.size, aes(sizediff, Fst)) + geom_point(aes(colour = site)) + geom_smooth(method="lm", aes(colour = site), fullrange=TRUE, se=FALSE, size = 0.5)
fst.fac <- Fs.plot + facet_grid(. ~ site)
Fs.sum.plot <- ggplot(Fst.plot.sizesum, aes(sizesum, Fst)) + geom_point(aes(colour = site)) + geom_smooth(method="lm", aes(colour = site), fullrange=TRUE, se=FALSE, size = 0.5)
fst.sum.fac <- Fs.sum.plot + facet_grid(. ~ site)
snp.plot <- ggplot(SNPs.plot.abs, aes(size, snpskb1)) + geom_point(aes(colour = site)) + geom_smooth(method="lm", aes(colour = site), fullrange=TRUE, se=FALSE, size = 0.5)
snps.abs.fac <- snp.plot + facet_grid(. ~ site)
# create text box according to outputs from rcorr
# split correlation
grr <- grobTree(textGrob("r = 0.27, p = 0.45", x=0.1, y=0.45, hjust=0, gp=gpar(col="black", fontsize=10, fontface="italic")), textGrob("r = 0.30, p = 0.40", x=0.51, y=0.45, hjust=0, gp=gpar(col="black", fontsize=10, fontface="italic")), textGrob("r = 0.17, p = 0.64", x=0.72, y=0.45, hjust=0, gp=gpar(col="black", fontsize=10, fontface="italic")))
grr_sum <- grobTree(textGrob("r = 0.62, p = 0.06", x=0.1, y=0.45, hjust=0, gp=gpar(col="black", fontsize=10, fontface="italic")), textGrob("r = -0.18, p = 0.62", x=0.51, y=0.45, hjust=0, gp=gpar(col="black", fontsize=10, fontface="italic")), textGrob("r = 0.51, p = 0.13", x=0.72, y=0.45, hjust=0, gp=gpar(col="black", fontsize=10, fontface="italic")))
grob <- grobTree(textGrob("r = 0.61, p = 0.06", x=0.1, y=0.30, hjust=0, gp=gpar(col="black", fontsize=10, fontface="italic")), textGrob("r = 0.25, p = 0.48", x=0.51, y=0.30, hjust=0, gp=gpar(col="black", fontsize=10, fontface="italic")), textGrob("r = 0.49, p = 0.18", x=0.72, y=0.30, hjust=0, gp=gpar(col="black", fontsize=10, fontface="italic"))) # numbers when average shell sizes plotted
grib <- grobTree(textGrob("r = -0.5, p = 0.4", x=0.1, y=0.30, hjust=0, gp=gpar(col="black", fontsize=10, fontface="italic")), textGrob("r = 0.9, p = 0.04", x=0.51, y=0.30, hjust=0, gp=gpar(col="black", fontsize=10, fontface="italic")), textGrob("r = -0.8, p = 0.2", x=0.72, y=0.30, hjust=0, gp=gpar(col="black", fontsize=10, fontface="italic"))) # snps and shell length corr.
# place plots into one
grid.arrange(grr, fst.fac, grr_sum, fst.sum.fac, grib, snps.abs.fac, ncol = 1, nrow = 6, widths=c(6), heights=c(0.5, 6, 1, 6, 1, 6))
```