-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
230 lines (185 loc) · 7.05 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import dgl.function as fn
import torch
import torch.nn as nn
import torch.nn.functional as F
class MLPLinear(nn.Module):
def __init__(self, in_dim, out_dim):
super(MLPLinear, self).__init__()
self.linear = nn.Linear(in_dim, out_dim)
self.reset_parameters()
def reset_parameters(self):
self.linear.reset_parameters()
def forward(self, x):
return F.log_softmax(self.linear(x), dim=-1)
class MLP(nn.Module):
def __init__(self, in_dim, hid_dim, out_dim, num_layers, dropout=0.0):
super(MLP, self).__init__()
assert num_layers >= 2
self.linears = nn.ModuleList()
self.bns = nn.ModuleList()
self.linears.append(nn.Linear(in_dim, hid_dim))
self.bns.append(nn.BatchNorm1d(hid_dim))
for _ in range(num_layers - 2):
self.linears.append(nn.Linear(hid_dim, hid_dim))
self.bns.append(nn.BatchNorm1d(hid_dim))
self.linears.append(nn.Linear(hid_dim, out_dim))
self.dropout = dropout
self.reset_parameters()
def reset_parameters(self):
for layer in self.linears:
layer.reset_parameters()
for layer in self.bns:
layer.reset_parameters()
def forward(self, x):
for linear, bn in zip(self.linears[:-1], self.bns):
x = linear(x)
x = F.relu(x, inplace=True)
x = bn(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.linears[-1](x)
return F.log_softmax(x, dim=-1)
class LabelPropagation(nn.Module):
r"""
Description
-----------
Introduced in `Learning from Labeled and Unlabeled Data with Label Propagation <https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.3864&rep=rep1&type=pdf>`_
.. math::
\mathbf{Y}^{\prime} = \alpha \cdot \mathbf{D}^{-1/2} \mathbf{A}
\mathbf{D}^{-1/2} \mathbf{Y} + (1 - \alpha) \mathbf{Y},
where unlabeled data is inferred by labeled data via propagation.
Parameters
----------
num_layers: int
The number of propagations.
alpha: float
The :math:`\alpha` coefficient.
adj: str
'DAD': D^-0.5 * A * D^-0.5
'DA': D^-1 * A
'AD': A * D^-1
"""
def __init__(self, num_layers, alpha, adj="DAD"):
super(LabelPropagation, self).__init__()
self.num_layers = num_layers
self.alpha = alpha
self.adj = adj
@torch.no_grad()
def forward(
self, g, labels, mask=None, post_step=lambda y: y.clamp_(0.0, 1.0)
):
with g.local_scope():
if labels.dtype == torch.long:
labels = F.one_hot(labels.view(-1)).to(torch.float32)
y = labels
if mask is not None:
y = torch.zeros_like(labels)
y[mask] = labels[mask]
last = (1 - self.alpha) * y
degs = g.in_degrees().float().clamp(min=1)
norm = (
torch.pow(degs, -0.5 if self.adj == "DAD" else -1)
.to(labels.device)
.unsqueeze(1)
)
for _ in range(self.num_layers):
# Assume the graphs to be undirected
if self.adj in ["DAD", "AD"]:
y = norm * y
g.ndata["h"] = y
g.update_all(fn.copy_u("h", "m"), fn.sum("m", "h"))
y = self.alpha * g.ndata.pop("h")
if self.adj in ["DAD", "DA"]:
y = y * norm
y = post_step(last + y)
return y
class CorrectAndSmooth(nn.Module):
r"""
Description
-----------
Introduced in `Combining Label Propagation and Simple Models Out-performs Graph Neural Networks <https://arxiv.org/abs/2010.13993>`_
Parameters
----------
num_correction_layers: int
The number of correct propagations.
correction_alpha: float
The coefficient of correction.
correction_adj: str
'DAD': D^-0.5 * A * D^-0.5
'DA': D^-1 * A
'AD': A * D^-1
num_smoothing_layers: int
The number of smooth propagations.
smoothing_alpha: float
The coefficient of smoothing.
smoothing_adj: str
'DAD': D^-0.5 * A * D^-0.5
'DA': D^-1 * A
'AD': A * D^-1
autoscale: bool, optional
If set to True, will automatically determine the scaling factor :math:`\sigma`. Default is True.
scale: float, optional
The scaling factor :math:`\sigma`, in case :obj:`autoscale = False`. Default is 1.
"""
def __init__(
self,
num_correction_layers,
correction_alpha,
correction_adj,
num_smoothing_layers,
smoothing_alpha,
smoothing_adj,
autoscale=True,
scale=1.0,
):
super(CorrectAndSmooth, self).__init__()
self.autoscale = autoscale
self.scale = scale
self.prop1 = LabelPropagation(
num_correction_layers, correction_alpha, correction_adj
)
self.prop2 = LabelPropagation(
num_smoothing_layers, smoothing_alpha, smoothing_adj
)
def correct(self, g, y_soft, y_true, mask):
with g.local_scope():
assert abs(float(y_soft.sum()) / y_soft.size(0) - 1.0) < 1e-2
numel = (
int(mask.sum()) if mask.dtype == torch.bool else mask.size(0)
)
assert y_true.size(0) == numel
if y_true.dtype == torch.long:
y_true = F.one_hot(y_true.view(-1), y_soft.size(-1)).to(
y_soft.dtype
)
error = torch.zeros_like(y_soft)
error[mask] = y_true - y_soft[mask]
if self.autoscale:
smoothed_error = self.prop1(
g, error, post_step=lambda x: x.clamp_(-1.0, 1.0)
)
sigma = error[mask].abs().sum() / numel
scale = sigma / smoothed_error.abs().sum(dim=1, keepdim=True)
scale[scale.isinf() | (scale > 1000)] = 1.0
result = y_soft + scale * smoothed_error
result[result.isnan()] = y_soft[result.isnan()]
return result
else:
def fix_input(x):
x[mask] = error[mask]
return x
smoothed_error = self.prop1(g, error, post_step=fix_input)
result = y_soft + self.scale * smoothed_error
result[result.isnan()] = y_soft[result.isnan()]
return result
def smooth(self, g, y_soft, y_true, mask):
with g.local_scope():
numel = (
int(mask.sum()) if mask.dtype == torch.bool else mask.size(0)
)
assert y_true.size(0) == numel
if y_true.dtype == torch.long:
y_true = F.one_hot(y_true.view(-1), y_soft.size(-1)).to(
y_soft.dtype
)
y_soft[mask] = y_true
return self.prop2(g, y_soft)