-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
40 lines (31 loc) · 1.2 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import dgl.function as fn
import torch as th
import torch.nn as nn
import torch.nn.functional as F
class Layer(nn.Module):
def __init__(self, in_dim, out_dim):
super().__init__()
self.layer = nn.Linear(in_dim * 2, out_dim, bias=True)
def forward(self, graph, feat, eweight=None):
with graph.local_scope():
graph.ndata["h"] = feat
if eweight is None:
graph.update_all(fn.copy_u("h", "m"), fn.mean("m", "h"))
else:
graph.edata["ew"] = eweight
graph.update_all(fn.u_mul_e("h", "ew", "m"), fn.mean("m", "h"))
h = self.layer(th.cat([graph.ndata["h"], feat], dim=-1))
return h
class Model(nn.Module):
def __init__(self, in_dim, out_dim, hid_dim=40):
super().__init__()
self.in_layer = Layer(in_dim, hid_dim)
self.hid_layer = Layer(hid_dim, hid_dim)
self.out_layer = Layer(hid_dim, out_dim)
def forward(self, graph, feat, eweight=None):
h = self.in_layer(graph, feat.float(), eweight)
h = F.relu(h)
h = self.hid_layer(graph, h, eweight)
h = F.relu(h)
h = self.out_layer(graph, h, eweight)
return h