-
Notifications
You must be signed in to change notification settings - Fork 0
/
ged.py
1333 lines (1189 loc) · 47 KB
/
ged.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from copy import deepcopy
from heapq import heapify, heappop, heappush, nsmallest
import dgl
import numpy as np
# We use lapjv implementation (https://github.com/src-d/lapjv) to solve assignment problem, because of its scalability
# Also see https://github.com/berhane/LAP-solvers for benchmarking of LAP solvers
from lapjv import lapjv
EPSILON = 0.0000001
def validate_cost_functions(
G1,
G2,
node_substitution_cost=None,
edge_substitution_cost=None,
G1_node_deletion_cost=None,
G1_edge_deletion_cost=None,
G2_node_insertion_cost=None,
G2_edge_insertion_cost=None,
):
"""Validates cost functions (substitution, insertion, deletion) and initializes them with default=0 for substitution
and default=1 for insertion/deletion
if the provided ones are None.
Parameters : see graph_edit_distance
"""
num_G1_nodes = G1.number_of_nodes()
num_G2_nodes = G2.number_of_nodes()
num_G1_edges = G1.number_of_edges()
num_G2_edges = G2.number_of_edges()
# if any cost matrix is None, initialize it with default costs
if node_substitution_cost is None:
node_substitution_cost = np.zeros(
(num_G1_nodes, num_G2_nodes), dtype=float
)
else:
assert node_substitution_cost.shape == (num_G1_nodes, num_G2_nodes)
if edge_substitution_cost is None:
edge_substitution_cost = np.zeros(
(num_G1_edges, num_G2_edges), dtype=float
)
else:
assert edge_substitution_cost.shape == (num_G1_edges, num_G2_edges)
if G1_node_deletion_cost is None:
G1_node_deletion_cost = np.ones(num_G1_nodes, dtype=float)
else:
assert G1_node_deletion_cost.shape[0] == num_G1_nodes
if G1_edge_deletion_cost is None:
G1_edge_deletion_cost = np.ones(num_G1_edges, dtype=float)
else:
assert G1_edge_deletion_cost.shape[0] == num_G1_edges
if G2_node_insertion_cost is None:
G2_node_insertion_cost = np.ones(num_G2_nodes, dtype=float)
else:
assert G2_node_insertion_cost.shape[0] == num_G2_nodes
if G2_edge_insertion_cost is None:
G2_edge_insertion_cost = np.ones(num_G2_edges, dtype=float)
else:
assert G2_edge_insertion_cost.shape[0] == num_G2_edges
return (
node_substitution_cost,
edge_substitution_cost,
G1_node_deletion_cost,
G1_edge_deletion_cost,
G2_node_insertion_cost,
G2_edge_insertion_cost,
)
def construct_cost_functions(
G1,
G2,
node_substitution_cost,
edge_substitution_cost,
G1_node_deletion_cost,
G1_edge_deletion_cost,
G2_node_insertion_cost,
G2_edge_insertion_cost,
):
"""Constructs cost matrices for LAP solution
Parameters : see graph_edit_distance
"""
num_G1_nodes = G1.number_of_nodes()
num_G2_nodes = G2.number_of_nodes()
num_G1_edges = G1.number_of_edges()
num_G2_edges = G2.number_of_edges()
# cost matrix of node mappings
cost_upper_bound = (
node_substitution_cost.sum()
+ G1_node_deletion_cost.sum()
+ G2_node_insertion_cost.sum()
+ 1
)
C_node = np.zeros(
(num_G1_nodes + num_G2_nodes, num_G1_nodes + num_G2_nodes), dtype=float
)
C_node[0:num_G1_nodes, 0:num_G2_nodes] = node_substitution_cost
C_node[
0:num_G1_nodes, num_G2_nodes : num_G2_nodes + num_G1_nodes
] = np.array(
[
G1_node_deletion_cost[i] if i == j else cost_upper_bound
for i in range(num_G1_nodes)
for j in range(num_G1_nodes)
]
).reshape(
num_G1_nodes, num_G1_nodes
)
C_node[
num_G1_nodes : num_G1_nodes + num_G2_nodes, 0:num_G2_nodes
] = np.array(
[
G2_node_insertion_cost[i] if i == j else cost_upper_bound
for i in range(num_G2_nodes)
for j in range(num_G2_nodes)
]
).reshape(
num_G2_nodes, num_G2_nodes
)
# cost matrix of edge mappings
cost_upper_bound = (
edge_substitution_cost.sum()
+ G1_edge_deletion_cost.sum()
+ G2_edge_insertion_cost.sum()
+ 1
)
C_edge = np.zeros(
(num_G1_edges + num_G2_edges, num_G1_edges + num_G2_edges), dtype=float
)
C_edge[0:num_G1_edges, 0:num_G2_edges] = edge_substitution_cost
C_edge[
0:num_G1_edges, num_G2_edges : num_G2_edges + num_G1_edges
] = np.array(
[
G1_edge_deletion_cost[i] if i == j else cost_upper_bound
for i in range(num_G1_edges)
for j in range(num_G1_edges)
]
).reshape(
num_G1_edges, num_G1_edges
)
C_edge[
num_G1_edges : num_G1_edges + num_G2_edges, 0:num_G2_edges
] = np.array(
[
G2_edge_insertion_cost[i] if i == j else cost_upper_bound
for i in range(num_G2_edges)
for j in range(num_G2_edges)
]
).reshape(
num_G2_edges, num_G2_edges
)
return C_node, C_edge
def get_edges_to_match(G, node_id, matched_nodes):
# Find the edges in G with one end-point as node_id and other in matched_nodes or node_id
incident_edges = np.array([], dtype=int)
index = np.array([], dtype=int)
direction = np.array([], dtype=int)
if G.has_edge_between(node_id, node_id):
self_edge_ids = G.edge_ids(node_id, node_id, return_array=True).numpy()
incident_edges = np.concatenate((incident_edges, self_edge_ids))
index = np.concatenate((index, [-1] * len(self_edge_ids)))
direction = np.concatenate((direction, [0] * len(self_edge_ids)))
# Find predecessors
src, _, eid = G.in_edges([node_id], "all")
eid = eid.numpy()
src = src.numpy()
filtered_indices = [
(i, matched_nodes.index(src[i]))
for i in range(len(src))
if src[i] in matched_nodes
]
matched_index = np.array([_[1] for _ in filtered_indices], dtype=int)
eid_index = np.array([_[0] for _ in filtered_indices], dtype=int)
index = np.concatenate((index, matched_index))
incident_edges = np.concatenate((incident_edges, eid[eid_index]))
direction = np.concatenate(
(direction, np.array([-1] * len(filtered_indices), dtype=int))
)
# Find successors
_, dst, eid = G.out_edges([node_id], "all")
eid = eid.numpy()
dst = dst.numpy()
filtered_indices = [
(i, matched_nodes.index(dst[i]))
for i in range(len(dst))
if dst[i] in matched_nodes
]
matched_index = np.array([_[1] for _ in filtered_indices], dtype=int)
eid_index = np.array([_[0] for _ in filtered_indices], dtype=int)
index = np.concatenate((index, matched_index))
incident_edges = np.concatenate((incident_edges, eid[eid_index]))
direction = np.concatenate(
(direction, np.array([1] * len(filtered_indices), dtype=int))
)
return incident_edges, index, direction
def subset_cost_matrix(cost_matrix, row_ids, col_ids, num_rows, num_cols):
# Extract thr subset of cost matrix corresponding to rows/cols in arrays row_ids/col_ids
# Note that the shape of cost_matrix is (num_rows+num_cols) * (num_rows+num_cols)
extended_row_ids = np.concatenate(
(row_ids, np.array([k + num_rows for k in col_ids]))
)
extended_col_ids = np.concatenate(
(col_ids, np.array([k + num_cols for k in row_ids]))
)
return cost_matrix[extended_row_ids, :][:, extended_col_ids]
class search_tree_node:
def __init__(
self,
G1,
G2,
parent_matched_cost,
parent_matched_nodes,
parent_matched_edges,
node_G1,
node_G2,
parent_unprocessed_nodes_G1,
parent_unprocessed_nodes_G2,
parent_unprocessed_edges_G1,
parent_unprocessed_edges_G2,
cost_matrix_nodes,
cost_matrix_edges,
):
self.matched_cost = parent_matched_cost
self.future_approximate_cost = 0.0
self.matched_nodes = deepcopy(parent_matched_nodes)
self.matched_nodes[0].append(node_G1)
self.matched_nodes[1].append(node_G2)
self.matched_edges = deepcopy(parent_matched_edges)
self.unprocessed_nodes_G1 = [
_ for _ in parent_unprocessed_nodes_G1 if _ != node_G1
]
self.unprocessed_nodes_G2 = [
_ for _ in parent_unprocessed_nodes_G2 if _ != node_G2
]
# Add the cost of matching nodes at this tree-node to the matched cost
if (
node_G1 is not None and node_G2 is not None
): # Substitute node_G1 with node_G2
self.matched_cost += cost_matrix_nodes[node_G1, node_G2]
elif node_G1 is not None: # Delete node_G1
self.matched_cost += cost_matrix_nodes[
node_G1, node_G1 + G2.number_of_nodes()
]
elif node_G2 is not None: # Insert node_G2
self.matched_cost += cost_matrix_nodes[
node_G2 + G1.number_of_nodes(), node_G2
]
# Add the cost of matching edges at this tree-node to the matched cost
incident_edges_G1 = []
if (
node_G1 is not None
): # Find the edges with one end-point as node_G1 and other in matched nodes or node_G1
incident_edges_G1, index_G1, direction_G1 = get_edges_to_match(
G1, node_G1, parent_matched_nodes[0]
)
incident_edges_G2 = np.array([])
if (
node_G2 is not None
): # Find the edges with one end-point as node_G2 and other in matched nodes or node_G2
incident_edges_G2, index_G2, direction_G2 = get_edges_to_match(
G2, node_G2, parent_matched_nodes[1]
)
if (
len(incident_edges_G1) > 0 and len(incident_edges_G2) > 0
): # Consider substituting
matched_edges_cost_matrix = subset_cost_matrix(
cost_matrix_edges,
incident_edges_G1,
incident_edges_G2,
G1.number_of_edges(),
G2.number_of_edges(),
)
max_sum = matched_edges_cost_matrix.sum()
# take care of impossible assignments by assigning maximum cost
for i in range(len(incident_edges_G1)):
for j in range(len(incident_edges_G2)):
# both edges need to have same direction and the other end nodes are matched
if (
direction_G1[i] == direction_G2[j]
and index_G1[i] == index_G2[j]
):
continue
else:
matched_edges_cost_matrix[i, j] = max_sum
# Match the edges as per the LAP solution
row_ind, col_ind, _ = lapjv(matched_edges_cost_matrix)
lap_cost = 0.00
for i in range(len(row_ind)):
lap_cost += matched_edges_cost_matrix[i, row_ind[i]]
# Update matched edges
for i in range(len(row_ind)):
if i < len(incident_edges_G1):
self.matched_edges[0].append(incident_edges_G1[i])
if row_ind[i] < len(incident_edges_G2):
self.matched_edges[1].append(
incident_edges_G2[row_ind[i]]
)
else:
self.matched_edges[1].append(None)
elif row_ind[i] < len(incident_edges_G2):
self.matched_edges[0].append(None)
self.matched_edges[1].append(incident_edges_G2[row_ind[i]])
self.matched_cost += lap_cost
elif len(incident_edges_G1) > 0: # only deletion possible
edge_deletion_cost = 0.0
for edge in incident_edges_G1:
edge_deletion_cost += cost_matrix_edges[
edge, G2.number_of_edges() + edge
]
# Update matched edges
for edge in incident_edges_G1:
self.matched_edges[0].append(edge)
self.matched_edges[1].append(None)
# Update matched edges
self.matched_cost += edge_deletion_cost
elif len(incident_edges_G2) > 0: # only insertion possible
edge_insertion_cost = 0.0
for edge in incident_edges_G2:
edge_insertion_cost += cost_matrix_edges[
G1.number_of_edges() + edge, edge
]
# Update matched edges
for edge in incident_edges_G2:
self.matched_edges[0].append(None)
self.matched_edges[1].append(edge)
self.matched_cost += edge_insertion_cost
# Add the cost of matching of unprocessed nodes to the future approximate cost
if (
len(self.unprocessed_nodes_G1) > 0
and len(self.unprocessed_nodes_G2) > 0
): # Consider substituting
unmatched_nodes_cost_matrix = subset_cost_matrix(
cost_matrix_nodes,
self.unprocessed_nodes_G1,
self.unprocessed_nodes_G2,
G1.number_of_nodes(),
G2.number_of_nodes(),
)
# Match the edges as per the LAP solution
row_ind, col_ind, _ = lapjv(unmatched_nodes_cost_matrix)
lap_cost = 0.00
for i in range(len(row_ind)):
lap_cost += unmatched_nodes_cost_matrix[i, row_ind[i]]
self.future_approximate_cost += lap_cost
elif len(self.unprocessed_nodes_G1) > 0: # only deletion possible
node_deletion_cost = 0.0
for node in self.unprocessed_nodes_G1:
node_deletion_cost += cost_matrix_nodes[
node, G2.number_of_nodes() + node
]
self.future_approximate_cost += node_deletion_cost
elif len(self.unprocessed_nodes_G2) > 0: # only insertion possible
node_insertion_cost = 0.0
for node in self.unprocessed_nodes_G2:
node_insertion_cost += cost_matrix_nodes[
G1.number_of_nodes() + node, node
]
self.future_approximate_cost += node_insertion_cost
# Add the cost of LAP matching of unprocessed edges to the future approximate cost
self.unprocessed_edges_G1 = [
_ for _ in parent_unprocessed_edges_G1 if _ not in incident_edges_G1
]
self.unprocessed_edges_G2 = [
_ for _ in parent_unprocessed_edges_G2 if _ not in incident_edges_G2
]
if (
len(self.unprocessed_edges_G1) > 0
and len(self.unprocessed_edges_G2) > 0
): # Consider substituting
unmatched_edges_cost_matrix = subset_cost_matrix(
cost_matrix_edges,
self.unprocessed_edges_G1,
self.unprocessed_edges_G2,
G1.number_of_edges(),
G2.number_of_edges(),
)
# Match the edges as per the LAP solution
row_ind, col_ind, _ = lapjv(unmatched_edges_cost_matrix)
lap_cost = 0.00
for i in range(len(row_ind)):
lap_cost += unmatched_edges_cost_matrix[i, row_ind[i]]
self.future_approximate_cost += lap_cost
elif len(self.unprocessed_edges_G1) > 0: # only deletion possible
edge_deletion_cost = 0.0
for edge in self.unprocessed_edges_G1:
edge_deletion_cost += cost_matrix_edges[
edge, G2.number_of_edges() + edge
]
self.future_approximate_cost += edge_deletion_cost
elif len(self.unprocessed_edges_G2) > 0: # only insertion possible
edge_insertion_cost = 0.0
for edge in self.unprocessed_edges_G2:
edge_insertion_cost += cost_matrix_edges[
G1.number_of_edges() + edge, edge
]
self.future_approximate_cost += edge_insertion_cost
# For heap insertion order
def __lt__(self, other):
if (
abs(
(self.matched_cost + self.future_approximate_cost)
- (other.matched_cost + other.future_approximate_cost)
)
> EPSILON
):
return (self.matched_cost + self.future_approximate_cost) < (
other.matched_cost + other.future_approximate_cost
)
elif abs(self.matched_cost - other.matched_cost) > EPSILON:
return other.matched_cost < self.matched_cost
# matched cost is closer to reality
else:
return (
len(self.unprocessed_nodes_G1)
+ len(self.unprocessed_nodes_G2)
+ len(self.unprocessed_edges_G1)
+ len(self.unprocessed_edges_G2)
) < (
len(other.unprocessed_nodes_G1)
+ len(other.unprocessed_nodes_G2)
+ len(other.unprocessed_edges_G1)
+ len(other.unprocessed_edges_G2)
)
def edit_cost_from_node_matching(
G1, G2, cost_matrix_nodes, cost_matrix_edges, node_matching
):
matched_cost = 0.0
matched_nodes = ([], [])
matched_edges = ([], [])
# Add the cost of matching nodes
for i in range(G1.number_of_nodes()):
matched_cost += cost_matrix_nodes[i, node_matching[i]]
matched_nodes[0].append(i)
if node_matching[i] < G2.number_of_nodes():
matched_nodes[1].append(node_matching[i])
else:
matched_nodes[1].append(None)
for i in range(G1.number_of_nodes(), len(node_matching)):
matched_cost += cost_matrix_nodes[i, node_matching[i]]
if node_matching[i] < G2.number_of_nodes():
matched_nodes[0].append(None)
matched_nodes[1].append(node_matching[i])
for i in range(len(matched_nodes[0])):
# Add the cost of matching edges
incident_edges_G1 = []
if (
matched_nodes[0][i] is not None
): # Find the edges with one end-point as node_G1 and other in matched nodes or node_G1
incident_edges_G1, index_G1, direction_G1 = get_edges_to_match(
G1, matched_nodes[0][i], matched_nodes[0][:i]
)
incident_edges_G2 = np.array([])
if (
matched_nodes[1][i] is not None
): # Find the edges with one end-point as node_G2 and other in matched nodes or node_G2
incident_edges_G2, index_G2, direction_G2 = get_edges_to_match(
G2, matched_nodes[1][i], matched_nodes[1][:i]
)
if (
len(incident_edges_G1) > 0 and len(incident_edges_G2) > 0
): # Consider substituting
matched_edges_cost_matrix = subset_cost_matrix(
cost_matrix_edges,
incident_edges_G1,
incident_edges_G2,
G1.number_of_edges(),
G2.number_of_edges(),
)
max_sum = matched_edges_cost_matrix.sum()
# take care of impossible assignments by assigning maximum cost
for i in range(len(incident_edges_G1)):
for j in range(len(incident_edges_G2)):
# both edges need to have same direction and the other end nodes are matched
if (
direction_G1[i] == direction_G2[j]
and index_G1[i] == index_G2[j]
):
continue
else:
matched_edges_cost_matrix[i, j] = max_sum
# Match the edges as per the LAP solution
row_ind, col_ind, _ = lapjv(matched_edges_cost_matrix)
lap_cost = 0.00
for i in range(len(row_ind)):
lap_cost += matched_edges_cost_matrix[i, row_ind[i]]
# Update matched edges
for i in range(len(row_ind)):
if i < len(incident_edges_G1):
matched_edges[0].append(incident_edges_G1[i])
if row_ind[i] < len(incident_edges_G2):
matched_edges[1].append(incident_edges_G2[row_ind[i]])
else:
matched_edges[1].append(None)
elif row_ind[i] < len(incident_edges_G2):
matched_edges[0].append(None)
matched_edges[1].append(incident_edges_G2[row_ind[i]])
matched_cost += lap_cost
elif len(incident_edges_G1) > 0: # only deletion possible
edge_deletion_cost = 0.0
for edge in incident_edges_G1:
edge_deletion_cost += cost_matrix_edges[
edge, G2.number_of_edges() + edge
]
# Update matched edges
for edge in incident_edges_G1:
matched_edges[0].append(edge)
matched_edges[1].append(None)
# Update matched edges
matched_cost += edge_deletion_cost
elif len(incident_edges_G2) > 0: # only insertion possible
edge_insertion_cost = 0.0
for edge in incident_edges_G2:
edge_insertion_cost += cost_matrix_edges[
G1.number_of_edges() + edge, edge
]
# Update matched edges
for edge in incident_edges_G2:
matched_edges[0].append(None)
matched_edges[1].append(edge)
matched_cost += edge_insertion_cost
return (matched_cost, matched_nodes, matched_edges)
def contextual_cost_matrix_construction(
G1,
G2,
node_substitution_cost,
edge_substitution_cost,
G1_node_deletion_cost,
G1_edge_deletion_cost,
G2_node_insertion_cost,
G2_edge_insertion_cost,
):
# Calculates approximate GED using linear assignment on the nodes with bipartite algorithm
# cost matrix of node mappings
num_G1_nodes = G1.number_of_nodes()
num_G2_nodes = G2.number_of_nodes()
num_G1_edges = G1.number_of_edges()
num_G2_edges = G2.number_of_edges()
cost_upper_bound = 2 * (
node_substitution_cost.sum()
+ G1_node_deletion_cost.sum()
+ G2_node_insertion_cost.sum()
+ 1
)
cost_matrix = np.zeros(
(num_G1_nodes + num_G2_nodes, num_G1_nodes + num_G2_nodes), dtype=float
)
cost_matrix[0:num_G1_nodes, 0:num_G2_nodes] = node_substitution_cost
cost_matrix[
0:num_G1_nodes, num_G2_nodes : num_G2_nodes + num_G1_nodes
] = np.array(
[
G1_node_deletion_cost[i] if i == j else cost_upper_bound
for i in range(num_G1_nodes)
for j in range(num_G1_nodes)
]
).reshape(
num_G1_nodes, num_G1_nodes
)
cost_matrix[
num_G1_nodes : num_G1_nodes + num_G2_nodes, 0:num_G2_nodes
] = np.array(
[
G2_node_insertion_cost[i] if i == j else cost_upper_bound
for i in range(num_G2_nodes)
for j in range(num_G2_nodes)
]
).reshape(
num_G2_nodes, num_G2_nodes
)
self_edge_list_G1 = [np.array([], dtype=int)] * num_G1_nodes
self_edge_list_G2 = [np.array([], dtype=int)] * num_G2_nodes
incoming_edges_G1 = [np.array([], dtype=int)] * num_G1_nodes
incoming_edges_G2 = [np.array([], dtype=int)] * num_G2_nodes
outgoing_edges_G1 = [np.array([], dtype=int)] * num_G1_nodes
outgoing_edges_G2 = [np.array([], dtype=int)] * num_G2_nodes
for i in range(num_G1_nodes):
if G1.has_edge_between(i, i):
self_edge_list_G1[i] = sorted(
G1.edge_ids(i, i, return_array=True).numpy()
)
incoming_edges_G1[i] = G1.in_edges([i], "eid").numpy()
incoming_edges_G1[i] = np.setdiff1d(
incoming_edges_G1[i], self_edge_list_G1[i]
)
outgoing_edges_G1[i] = G1.out_edges([i], "eid").numpy()
outgoing_edges_G1[i] = np.setdiff1d(
outgoing_edges_G1[i], self_edge_list_G1[i]
)
for i in range(num_G2_nodes):
if G2.has_edge_between(i, i):
self_edge_list_G2[i] = sorted(
G2.edge_ids(i, i, return_array=True).numpy()
)
incoming_edges_G2[i] = G2.in_edges([i], "eid").numpy()
incoming_edges_G2[i] = np.setdiff1d(
incoming_edges_G2[i], self_edge_list_G2[i]
)
outgoing_edges_G2[i] = G2.out_edges([i], "eid").numpy()
outgoing_edges_G2[i] = np.setdiff1d(
outgoing_edges_G2[i], self_edge_list_G2[i]
)
selected_deletion_G1 = [
G1_edge_deletion_cost[
np.concatenate(
(
self_edge_list_G1[i],
incoming_edges_G1[i],
outgoing_edges_G1[i],
)
)
]
for i in range(G1.number_of_nodes())
]
selected_insertion_G2 = [
G2_edge_insertion_cost[
np.concatenate(
(
self_edge_list_G2[i],
incoming_edges_G2[i],
outgoing_edges_G2[i],
)
)
]
for i in range(G2.number_of_nodes())
]
# Add the cost of edge edition which are dependent of a node (see this as the cost associated with a substructure)
for i in range(num_G1_nodes):
for j in range(num_G2_nodes):
m = (
len(self_edge_list_G1[i])
+ len(incoming_edges_G1[i])
+ len(outgoing_edges_G1[i])
)
n = (
len(self_edge_list_G2[j])
+ len(incoming_edges_G2[j])
+ len(outgoing_edges_G2[j])
)
matrix_dim = m + n
if matrix_dim == 0:
continue
temp_edge_cost_matrix = np.empty((matrix_dim, matrix_dim))
temp_edge_cost_matrix.fill(cost_upper_bound)
temp_edge_cost_matrix[
: len(self_edge_list_G1[i]), : len(self_edge_list_G2[j])
] = edge_substitution_cost[self_edge_list_G1[i], :][
:, self_edge_list_G2[j]
]
temp_edge_cost_matrix[
len(self_edge_list_G1[i]) : len(self_edge_list_G1[i])
+ len(incoming_edges_G1[i]),
len(self_edge_list_G2[j]) : len(self_edge_list_G2[j])
+ len(incoming_edges_G2[j]),
] = edge_substitution_cost[incoming_edges_G1[i], :][
:, incoming_edges_G2[j]
]
temp_edge_cost_matrix[
len(self_edge_list_G1[i]) + len(incoming_edges_G1[i]) : m,
len(self_edge_list_G2[j]) + len(incoming_edges_G2[j]) : n,
] = edge_substitution_cost[outgoing_edges_G1[i], :][
:, outgoing_edges_G2[j]
]
np.fill_diagonal(
temp_edge_cost_matrix[:m, n:], selected_deletion_G1[i]
)
np.fill_diagonal(
temp_edge_cost_matrix[m:, :n], selected_insertion_G2[j]
)
temp_edge_cost_matrix[m:, n:].fill(0)
row_ind, col_ind, _ = lapjv(temp_edge_cost_matrix)
lap_cost = 0.00
for k in range(len(row_ind)):
lap_cost += temp_edge_cost_matrix[k, row_ind[k]]
cost_matrix[i, j] += lap_cost
for i in range(num_G1_nodes):
cost_matrix[i, num_G2_nodes + i] += selected_deletion_G1[i].sum()
for i in range(num_G2_nodes):
cost_matrix[num_G1_nodes + i, i] += selected_insertion_G2[i].sum()
return cost_matrix
def hausdorff_matching(
G1,
G2,
node_substitution_cost,
edge_substitution_cost,
G1_node_deletion_cost,
G1_edge_deletion_cost,
G2_node_insertion_cost,
G2_edge_insertion_cost,
):
# Calculates approximate GED using hausdorff_matching
# cost matrix of node mappings
num_G1_nodes = G1.number_of_nodes()
num_G2_nodes = G2.number_of_nodes()
num_G1_edges = G1.number_of_edges()
num_G2_edges = G2.number_of_edges()
self_edge_list_G1 = [np.array([], dtype=int)] * num_G1_nodes
self_edge_list_G2 = [np.array([], dtype=int)] * num_G2_nodes
incoming_edges_G1 = [np.array([], dtype=int)] * num_G1_nodes
incoming_edges_G2 = [np.array([], dtype=int)] * num_G2_nodes
outgoing_edges_G1 = [np.array([], dtype=int)] * num_G1_nodes
outgoing_edges_G2 = [np.array([], dtype=int)] * num_G2_nodes
for i in range(num_G1_nodes):
if G1.has_edge_between(i, i):
self_edge_list_G1[i] = sorted(
G1.edge_ids(i, i, return_array=True).numpy()
)
incoming_edges_G1[i] = G1.in_edges([i], "eid").numpy()
incoming_edges_G1[i] = np.setdiff1d(
incoming_edges_G1[i], self_edge_list_G1[i]
)
outgoing_edges_G1[i] = G1.out_edges([i], "eid").numpy()
outgoing_edges_G1[i] = np.setdiff1d(
outgoing_edges_G1[i], self_edge_list_G1[i]
)
for i in range(num_G2_nodes):
if G2.has_edge_between(i, i):
self_edge_list_G2[i] = sorted(
G2.edge_ids(i, i, return_array=True).numpy()
)
incoming_edges_G2[i] = G2.in_edges([i], "eid").numpy()
incoming_edges_G2[i] = np.setdiff1d(
incoming_edges_G2[i], self_edge_list_G2[i]
)
outgoing_edges_G2[i] = G2.out_edges([i], "eid").numpy()
outgoing_edges_G2[i] = np.setdiff1d(
outgoing_edges_G2[i], self_edge_list_G2[i]
)
selected_deletion_self_G1 = [
G1_edge_deletion_cost[self_edge_list_G1[i]]
for i in range(G1.number_of_nodes())
]
selected_insertion_self_G2 = [
G2_edge_insertion_cost[self_edge_list_G2[i]]
for i in range(G2.number_of_nodes())
]
selected_deletion_incoming_G1 = [
G1_edge_deletion_cost[incoming_edges_G1[i]]
for i in range(G1.number_of_nodes())
]
selected_insertion_incoming_G2 = [
G2_edge_insertion_cost[incoming_edges_G2[i]]
for i in range(G2.number_of_nodes())
]
selected_deletion_outgoing_G1 = [
G1_edge_deletion_cost[outgoing_edges_G1[i]]
for i in range(G1.number_of_nodes())
]
selected_insertion_outgoing_G2 = [
G2_edge_insertion_cost[outgoing_edges_G2[i]]
for i in range(G2.number_of_nodes())
]
selected_deletion_G1 = [
G1_edge_deletion_cost[
np.concatenate(
(
self_edge_list_G1[i],
incoming_edges_G1[i],
outgoing_edges_G1[i],
)
)
]
for i in range(G1.number_of_nodes())
]
selected_insertion_G2 = [
G2_edge_insertion_cost[
np.concatenate(
(
self_edge_list_G2[i],
incoming_edges_G2[i],
outgoing_edges_G2[i],
)
)
]
for i in range(G2.number_of_nodes())
]
cost_G1 = np.array(
[
(G1_node_deletion_cost[i] + selected_deletion_G1[i].sum() / 2)
for i in range(num_G1_nodes)
]
)
cost_G2 = np.array(
[
(G2_node_insertion_cost[i] + selected_insertion_G2[i].sum() / 2)
for i in range(num_G2_nodes)
]
)
for i in range(num_G1_nodes):
for j in range(num_G2_nodes):
c1_self = deepcopy(selected_deletion_self_G1[i])
c2_self = deepcopy(selected_insertion_self_G2[j])
c1_incoming = deepcopy(selected_deletion_incoming_G1[i])
c2_incoming = deepcopy(selected_insertion_incoming_G2[j])
c1_outgoing = deepcopy(selected_deletion_outgoing_G1[i])
c2_outgoing = deepcopy(selected_insertion_outgoing_G2[j])
for k, a in enumerate(self_edge_list_G1[i]):
for l, b in enumerate(self_edge_list_G2[j]):
c1_self[k] = min(
c1_self[k], edge_substitution_cost[a, b] / 2
)
c2_self[l] = min(
c2_self[l], edge_substitution_cost[a, b] / 2
)
for k, a in enumerate(incoming_edges_G1[i]):
for l, b in enumerate(incoming_edges_G2[j]):
c1_incoming[k] = min(
c1_incoming[k], edge_substitution_cost[a, b] / 2
)
c2_incoming[l] = min(
c2_incoming[l], edge_substitution_cost[a, b] / 2
)
for k, a in enumerate(outgoing_edges_G1[i]):
for l, b in enumerate(outgoing_edges_G2[j]):
c1_outgoing[k] = min(
c1_outgoing[k], edge_substitution_cost[a, b] / 2
)
c2_outgoing[l] = min(
c2_outgoing[l], edge_substitution_cost[a, b] / 2
)
edge_hausdorff_lower_bound = 0.0
if len(selected_deletion_G1[i]) > len(selected_insertion_G2[j]):
idx = np.argpartition(
selected_deletion_G1[i],
(
len(selected_deletion_G1[i])
- len(selected_insertion_G2[j])
),
)
edge_hausdorff_lower_bound = selected_deletion_G1[i][
idx[
: (
len(selected_deletion_G1[i])
- len(selected_insertion_G2[j])
)
]
].sum()
elif len(selected_deletion_G1[i]) < len(selected_insertion_G2[j]):
idx = np.argpartition(
selected_insertion_G2[j],
(
len(selected_insertion_G2[j])
- len(selected_deletion_G1[i])
),
)
edge_hausdorff_lower_bound = selected_insertion_G2[j][
idx[
: (
len(selected_insertion_G2[j])
- len(selected_deletion_G1[i])
)
]
].sum()
sc_cost = 0.5 * (
node_substitution_cost[i, j]
+ 0.5
* max(
c1_self.sum()
+ c2_self.sum()
+ c1_incoming.sum()
+ c2_incoming.sum()
+ c1_outgoing.sum()
+ c2_outgoing.sum(),
edge_hausdorff_lower_bound,
)
)
if cost_G1[i] > sc_cost:
cost_G1[i] = sc_cost
if cost_G2[j] > sc_cost:
cost_G2[j] = sc_cost
graph_hausdorff_lower_bound = 0.0
if num_G1_nodes > num_G2_nodes:
idx = np.argpartition(
G1_node_deletion_cost, (num_G1_nodes - num_G2_nodes)
)
graph_hausdorff_lower_bound = G1_node_deletion_cost[
idx[: (num_G1_nodes - num_G2_nodes)]
].sum()
elif num_G1_nodes < num_G2_nodes:
idx = np.argpartition(
G2_node_insertion_cost, (num_G2_nodes - num_G1_nodes)
)
graph_hausdorff_lower_bound = G2_node_insertion_cost[
idx[: (num_G2_nodes - num_G1_nodes)]
].sum()
graph_hausdorff_cost = max(
graph_hausdorff_lower_bound, cost_G1.sum() + cost_G2.sum()
)
return graph_hausdorff_cost
def a_star_search(G1, G2, cost_matrix_nodes, cost_matrix_edges, max_beam_size):
# A-star traversal
open_list = []
# Create first nodes in the A-star search tree, matching node 0 of G1 with all possibilities (each node of G2, and deletion)
matched_cost = 0.0
matched_nodes = ([], [])
# No nodes matched in the beginning