-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
164 lines (142 loc) · 4.13 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import argparse
import time
import networkx as nx
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from conf import *
from models import *
import dgl
from dgl.data import load_data, register_data_args
def get_model_and_config(name):
name = name.lower()
if name == "gcn":
return GCN, GCN_CONFIG
elif name == "gat":
return GAT, GAT_CONFIG
elif name == "graphsage":
return GraphSAGE, GRAPHSAGE_CONFIG
elif name == "appnp":
return APPNP, APPNP_CONFIG
elif name == "tagcn":
return TAGCN, TAGCN_CONFIG
elif name == "agnn":
return AGNN, AGNN_CONFIG
elif name == "sgc":
return SGC, SGC_CONFIG
elif name == "gin":
return GIN, GIN_CONFIG
elif name == "chebnet":
return ChebNet, CHEBNET_CONFIG
def evaluate(model, features, labels, mask):
model.eval()
with torch.no_grad():
logits = model(features)
logits = logits[mask]
labels = labels[mask]
_, indices = torch.max(logits, dim=1)
correct = torch.sum(indices == labels)
return correct.item() * 1.0 / len(labels)
def main(args):
# load and preprocess dataset
data = load_data(args)
g = data[0]
if args.gpu < 0:
cuda = False
else:
cuda = True
g = g.to(args.gpu)
features = g.ndata["feat"]
labels = g.ndata["label"]
train_mask = g.ndata["train_mask"]
val_mask = g.ndata["val_mask"]
test_mask = g.ndata["test_mask"]
in_feats = features.shape[1]
n_classes = data.num_labels
n_edges = g.number_of_edges()
print(
"""----Data statistics------'
#Edges %d
#Classes %d
#Train samples %d
#Val samples %d
#Test samples %d"""
% (
n_edges,
n_classes,
train_mask.int().sum().item(),
val_mask.int().sum().item(),
test_mask.int().sum().item(),
)
)
# graph preprocess and calculate normalization factor
# add self loop
if args.self_loop:
g = g.remove_self_loop().add_self_loop()
n_edges = g.number_of_edges()
# normalization
degs = g.in_degrees().float()
norm = torch.pow(degs, -0.5)
norm[torch.isinf(norm)] = 0
g.ndata["norm"] = norm.unsqueeze(1)
# create GCN model
GNN, config = get_model_and_config(args.model)
model = GNN(g, in_feats, n_classes, *config["extra_args"])
if cuda:
model = model.cuda()
print(model)
loss_fcn = torch.nn.CrossEntropyLoss()
# use optimizer
optimizer = torch.optim.Adam(
model.parameters(), lr=config["lr"], weight_decay=config["weight_decay"]
)
# initialize graph
dur = []
for epoch in range(200):
model.train()
if epoch >= 3:
t0 = time.time()
# forward
logits = model(features)
loss = loss_fcn(logits[train_mask], labels[train_mask])
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch >= 3:
dur.append(time.time() - t0)
acc = evaluate(model, features, labels, val_mask)
print(
"Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
"ETputs(KTEPS) {:.2f}".format(
epoch,
np.mean(dur),
loss.item(),
acc,
n_edges / np.mean(dur) / 1000,
)
)
print()
acc = evaluate(model, features, labels, test_mask)
print("Test Accuracy {:.4f}".format(acc))
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Node classification on citation networks."
)
register_data_args(parser)
parser.add_argument(
"--model",
type=str,
default="gcn",
help="model to use, available models are gcn, gat, graphsage, gin,"
"appnp, tagcn, sgc, agnn",
)
parser.add_argument("--gpu", type=int, default=-1, help="gpu")
parser.add_argument(
"--self-loop",
action="store_true",
help="graph self-loop (default=False)",
)
args = parser.parse_args()
print(args)
main(args)