-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathentity_sample.py
170 lines (157 loc) · 5.68 KB
/
entity_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import argparse
import dgl
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl.data.rdf import AIFBDataset, AMDataset, BGSDataset, MUTAGDataset
from dgl.dataloading import DataLoader, MultiLayerNeighborSampler
from dgl.nn.pytorch import RelGraphConv
from torchmetrics.functional import accuracy
class RGCN(nn.Module):
def __init__(self, num_nodes, h_dim, out_dim, num_rels):
super().__init__()
self.emb = nn.Embedding(num_nodes, h_dim)
# two-layer RGCN
self.conv1 = RelGraphConv(
h_dim,
h_dim,
num_rels,
regularizer="basis",
num_bases=num_rels,
self_loop=False,
)
self.conv2 = RelGraphConv(
h_dim,
out_dim,
num_rels,
regularizer="basis",
num_bases=num_rels,
self_loop=False,
)
def forward(self, g):
x = self.emb(g[0].srcdata[dgl.NID])
h = F.relu(
self.conv1(g[0], x, g[0].edata[dgl.ETYPE], g[0].edata["norm"])
)
h = self.conv2(g[1], h, g[1].edata[dgl.ETYPE], g[1].edata["norm"])
return h
def evaluate(model, label, dataloader, inv_target):
model.eval()
eval_logits = []
eval_seeds = []
with torch.no_grad():
for input_nodes, output_nodes, blocks in dataloader:
output_nodes = inv_target[output_nodes]
for block in blocks:
block.edata["norm"] = dgl.norm_by_dst(block).unsqueeze(1)
logits = model(blocks)
eval_logits.append(logits.cpu().detach())
eval_seeds.append(output_nodes.cpu().detach())
eval_logits = torch.cat(eval_logits)
eval_seeds = torch.cat(eval_seeds)
return accuracy(eval_logits.argmax(dim=1), labels[eval_seeds].cpu()).item()
def train(device, g, target_idx, labels, train_mask, model):
# define train idx, loss function and optimizer
train_idx = torch.nonzero(train_mask, as_tuple=False).squeeze()
loss_fcn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-2, weight_decay=5e-4)
# construct sampler and dataloader
sampler = MultiLayerNeighborSampler([4, 4])
train_loader = DataLoader(
g,
target_idx[train_idx],
sampler,
device=device,
batch_size=100,
shuffle=True,
)
# no separate validation subset, use train index instead for validation
val_loader = DataLoader(
g,
target_idx[train_idx],
sampler,
device=device,
batch_size=100,
shuffle=False,
)
for epoch in range(50):
model.train()
total_loss = 0
for it, (input_nodes, output_nodes, blocks) in enumerate(train_loader):
output_nodes = inv_target[output_nodes]
for block in blocks:
block.edata["norm"] = dgl.norm_by_dst(block).unsqueeze(1)
logits = model(blocks)
loss = loss_fcn(logits, labels[output_nodes])
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
acc = evaluate(model, labels, val_loader, inv_target)
print(
"Epoch {:05d} | Loss {:.4f} | Val. Accuracy {:.4f} ".format(
epoch, total_loss / (it + 1), acc
)
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="RGCN for entity classification with sampling"
)
parser.add_argument(
"--dataset",
type=str,
default="aifb",
help="Dataset name ('aifb', 'mutag', 'bgs', 'am').",
)
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Training with DGL built-in RGCN module with sampling.")
# load and preprocess dataset
if args.dataset == "aifb":
data = AIFBDataset()
elif args.dataset == "mutag":
data = MUTAGDataset()
elif args.dataset == "bgs":
data = BGSDataset()
elif args.dataset == "am":
data = AMDataset()
else:
raise ValueError("Unknown dataset: {}".format(args.dataset))
g = data[0]
num_rels = len(g.canonical_etypes)
category = data.predict_category
labels = g.nodes[category].data.pop("labels").to(device)
train_mask = g.nodes[category].data.pop("train_mask")
test_mask = g.nodes[category].data.pop("test_mask")
# find target category and node id
category_id = g.ntypes.index(category)
g = dgl.to_homogeneous(g)
node_ids = torch.arange(g.num_nodes())
target_idx = node_ids[g.ndata[dgl.NTYPE] == category_id]
# rename the fields as they can be changed by DataLoader
g.ndata["ntype"] = g.ndata.pop(dgl.NTYPE)
g.ndata["type_id"] = g.ndata.pop(dgl.NID)
# find the mapping (inv_target) from global node IDs to type-specific node IDs
inv_target = torch.empty((g.num_nodes(),), dtype=torch.int64).to(device)
inv_target[target_idx] = torch.arange(
0, target_idx.shape[0], dtype=inv_target.dtype
).to(device)
# create RGCN model
in_size = g.num_nodes() # featureless with one-hot encoding
out_size = data.num_classes
model = RGCN(in_size, 16, out_size, num_rels).to(device)
train(device, g, target_idx, labels, train_mask, model)
test_idx = torch.nonzero(test_mask, as_tuple=False).squeeze()
test_sampler = MultiLayerNeighborSampler(
[-1, -1]
) # -1 for sampling all neighbors
test_loader = DataLoader(
g,
target_idx[test_idx],
test_sampler,
device=device,
batch_size=32,
shuffle=False,
)
acc = evaluate(model, labels, test_loader, inv_target)
print("Test accuracy {:.4f}".format(acc))