-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathentity_sample_multi_gpu.py
246 lines (232 loc) · 7.93 KB
/
entity_sample_multi_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import argparse
import os
import dgl
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
from dgl.data.rdf import AIFBDataset, AMDataset, BGSDataset, MUTAGDataset
from dgl.dataloading import DataLoader, MultiLayerNeighborSampler
from dgl.nn.pytorch import RelGraphConv
from torch.nn.parallel import DistributedDataParallel
from torchmetrics.functional import accuracy
class RGCN(nn.Module):
def __init__(self, num_nodes, h_dim, out_dim, num_rels):
super().__init__()
self.emb = nn.Embedding(num_nodes, h_dim)
# two-layer RGCN
self.conv1 = RelGraphConv(
h_dim,
h_dim,
num_rels,
regularizer="basis",
num_bases=num_rels,
self_loop=False,
)
self.conv2 = RelGraphConv(
h_dim,
out_dim,
num_rels,
regularizer="basis",
num_bases=num_rels,
self_loop=False,
)
def forward(self, g):
x = self.emb(g[0].srcdata[dgl.NID])
h = F.relu(
self.conv1(g[0], x, g[0].edata[dgl.ETYPE], g[0].edata["norm"])
)
h = self.conv2(g[1], h, g[1].edata[dgl.ETYPE], g[1].edata["norm"])
return h
def evaluate(model, labels, dataloader, inv_target):
model.eval()
eval_logits = []
eval_seeds = []
with torch.no_grad():
for input_nodes, output_nodes, blocks in dataloader:
output_nodes = inv_target[output_nodes]
for block in blocks:
block.edata["norm"] = dgl.norm_by_dst(block).unsqueeze(1)
logits = model(blocks)
eval_logits.append(logits.cpu().detach())
eval_seeds.append(output_nodes.cpu().detach())
eval_logits = torch.cat(eval_logits)
eval_seeds = torch.cat(eval_seeds)
num_seeds = len(eval_seeds)
loc_sum = accuracy(
eval_logits.argmax(dim=1), labels[eval_seeds].cpu()
) * float(num_seeds)
return torch.tensor([loc_sum.item(), float(num_seeds)])
def train(proc_id, device, g, target_idx, labels, train_idx, inv_target, model):
# define loss function and optimizer
loss_fcn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-2, weight_decay=5e-4)
# construct sampler and dataloader
sampler = MultiLayerNeighborSampler([4, 4])
train_loader = DataLoader(
g,
target_idx[train_idx],
sampler,
device=device,
batch_size=100,
shuffle=True,
use_ddp=True,
)
# no separate validation subset, use train index instead for validation
val_loader = DataLoader(
g,
target_idx[train_idx],
sampler,
device=device,
batch_size=100,
shuffle=False,
use_ddp=True,
)
for epoch in range(50):
model.train()
total_loss = 0
for it, (input_nodes, output_nodes, blocks) in enumerate(train_loader):
output_nodes = inv_target[output_nodes]
for block in blocks:
block.edata["norm"] = dgl.norm_by_dst(block).unsqueeze(1)
logits = model(blocks)
loss = loss_fcn(logits, labels[output_nodes])
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
# torchmetric accuracy defined as num_correct_labels / num_train_nodes
# loc_acc_split = [loc_accuracy * loc_num_train_nodes, loc_num_train_nodes]
loc_acc_split = evaluate(model, labels, val_loader, inv_target).to(
device
)
dist.reduce(loc_acc_split, 0)
if proc_id == 0:
acc = loc_acc_split[0] / loc_acc_split[1]
print(
"Epoch {:05d} | Loss {:.4f} | Val. Accuracy {:.4f} ".format(
epoch, total_loss / (it + 1), acc.item()
)
)
def run(proc_id, nprocs, devices, g, data):
# find corresponding device for my rank
device = devices[proc_id]
torch.cuda.set_device(device)
# initialize process group and unpack data for sub-processes
dist.init_process_group(
backend="nccl",
init_method="tcp://127.0.0.1:12345",
world_size=nprocs,
rank=proc_id,
)
(
num_rels,
num_classes,
labels,
train_idx,
test_idx,
target_idx,
inv_target,
) = data
labels = labels.to(device)
inv_target = inv_target.to(device)
# create RGCN model (distributed)
in_size = g.num_nodes()
out_size = num_classes
model = RGCN(in_size, 16, out_size, num_rels).to(device)
model = DistributedDataParallel(
model, device_ids=[device], output_device=device
)
# training + testing
train(proc_id, device, g, target_idx, labels, train_idx, inv_target, model)
test_sampler = MultiLayerNeighborSampler(
[-1, -1]
) # -1 for sampling all neighbors
test_loader = DataLoader(
g,
target_idx[test_idx],
test_sampler,
device=device,
batch_size=32,
shuffle=False,
use_ddp=True,
)
loc_acc_split = evaluate(model, labels, test_loader, inv_target).to(device)
dist.reduce(loc_acc_split, 0)
if proc_id == 0:
acc = loc_acc_split[0] / loc_acc_split[1]
print("Test accuracy {:.4f}".format(acc))
# cleanup process group
dist.destroy_process_group()
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="RGCN for entity classification with sampling (multi-gpu)"
)
parser.add_argument(
"--dataset",
type=str,
default="aifb",
help="Dataset name ('aifb', 'mutag', 'bgs', 'am').",
)
parser.add_argument(
"--gpu",
type=str,
default="0",
help="GPU(s) in use. Can be a list of gpu ids for multi-gpu training,"
" e.g., 0,1,2,3.",
)
args = parser.parse_args()
devices = list(map(int, args.gpu.split(",")))
nprocs = len(devices)
print(
f"Training with DGL built-in RGCN module with sampling using",
nprocs,
f"GPU(s)",
)
# load and preprocess dataset at master(parent) process
if args.dataset == "aifb":
data = AIFBDataset()
elif args.dataset == "mutag":
data = MUTAGDataset()
elif args.dataset == "bgs":
data = BGSDataset()
elif args.dataset == "am":
data = AMDataset()
else:
raise ValueError("Unknown dataset: {}".format(args.dataset))
g = data[0]
num_rels = len(g.canonical_etypes)
category = data.predict_category
labels = g.nodes[category].data.pop("labels")
train_mask = g.nodes[category].data.pop("train_mask")
test_mask = g.nodes[category].data.pop("test_mask")
# find target category and node id
category_id = g.ntypes.index(category)
g = dgl.to_homogeneous(g)
node_ids = torch.arange(g.num_nodes())
target_idx = node_ids[g.ndata[dgl.NTYPE] == category_id]
# rename the fields as they can be changed by DataLoader
g.ndata["ntype"] = g.ndata.pop(dgl.NTYPE)
g.ndata["type_id"] = g.ndata.pop(dgl.NID)
# find the mapping (inv_target) from global node IDs to type-specific node IDs
inv_target = torch.empty((g.num_nodes(),), dtype=torch.int64)
inv_target[target_idx] = torch.arange(
0, target_idx.shape[0], dtype=inv_target.dtype
)
# avoid creating certain graph formats and train/test indexes in each sub-process to save momory
g.create_formats_()
train_idx = torch.nonzero(train_mask, as_tuple=False).squeeze()
test_idx = torch.nonzero(test_mask, as_tuple=False).squeeze()
# thread limiting to avoid resource competition
os.environ["OMP_NUM_THREADS"] = str(mp.cpu_count() // 2 // nprocs)
data = (
num_rels,
data.num_classes,
labels,
train_idx,
test_idx,
target_idx,
inv_target,
)
mp.spawn(run, args=(nprocs, devices, g, data), nprocs=nprocs)