-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlink.py
352 lines (305 loc) · 11.1 KB
/
link.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import dgl
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import tqdm
from dgl.data.knowledge_graph import FB15k237Dataset
from dgl.dataloading import GraphDataLoader
from dgl.nn.pytorch import RelGraphConv
# for building training/testing graphs
def get_subset_g(g, mask, num_rels, bidirected=False):
src, dst = g.edges()
sub_src = src[mask]
sub_dst = dst[mask]
sub_rel = g.edata["etype"][mask]
if bidirected:
sub_src, sub_dst = torch.cat([sub_src, sub_dst]), torch.cat(
[sub_dst, sub_src]
)
sub_rel = torch.cat([sub_rel, sub_rel + num_rels])
sub_g = dgl.graph((sub_src, sub_dst), num_nodes=g.num_nodes())
sub_g.edata[dgl.ETYPE] = sub_rel
return sub_g
class GlobalUniform:
def __init__(self, g, sample_size):
self.sample_size = sample_size
self.eids = np.arange(g.num_edges())
def sample(self):
return torch.from_numpy(np.random.choice(self.eids, self.sample_size))
class NegativeSampler:
def __init__(self, k=10): # negative sampling rate = 10
self.k = k
def sample(self, pos_samples, num_nodes):
batch_size = len(pos_samples)
neg_batch_size = batch_size * self.k
neg_samples = np.tile(pos_samples, (self.k, 1))
values = np.random.randint(num_nodes, size=neg_batch_size)
choices = np.random.uniform(size=neg_batch_size)
subj = choices > 0.5
obj = choices <= 0.5
neg_samples[subj, 0] = values[subj]
neg_samples[obj, 2] = values[obj]
samples = np.concatenate((pos_samples, neg_samples))
# binary labels indicating positive and negative samples
labels = np.zeros(batch_size * (self.k + 1), dtype=np.float32)
labels[:batch_size] = 1
return torch.from_numpy(samples), torch.from_numpy(labels)
class SubgraphIterator:
def __init__(self, g, num_rels, sample_size=30000, num_epochs=6000):
self.g = g
self.num_rels = num_rels
self.sample_size = sample_size
self.num_epochs = num_epochs
self.pos_sampler = GlobalUniform(g, sample_size)
self.neg_sampler = NegativeSampler()
def __len__(self):
return self.num_epochs
def __getitem__(self, i):
eids = self.pos_sampler.sample()
src, dst = self.g.find_edges(eids)
src, dst = src.numpy(), dst.numpy()
rel = self.g.edata[dgl.ETYPE][eids].numpy()
# relabel nodes to have consecutive node IDs
uniq_v, edges = np.unique((src, dst), return_inverse=True)
num_nodes = len(uniq_v)
# edges is the concatenation of src, dst with relabeled ID
src, dst = np.reshape(edges, (2, -1))
relabeled_data = np.stack((src, rel, dst)).transpose()
samples, labels = self.neg_sampler.sample(relabeled_data, num_nodes)
# use only half of the positive edges
chosen_ids = np.random.choice(
np.arange(self.sample_size),
size=int(self.sample_size / 2),
replace=False,
)
src = src[chosen_ids]
dst = dst[chosen_ids]
rel = rel[chosen_ids]
src, dst = np.concatenate((src, dst)), np.concatenate((dst, src))
rel = np.concatenate((rel, rel + self.num_rels))
sub_g = dgl.graph((src, dst), num_nodes=num_nodes)
sub_g.edata[dgl.ETYPE] = torch.from_numpy(rel)
sub_g.edata["norm"] = dgl.norm_by_dst(sub_g).unsqueeze(-1)
uniq_v = torch.from_numpy(uniq_v).view(-1).long()
return sub_g, uniq_v, samples, labels
class RGCN(nn.Module):
def __init__(self, num_nodes, h_dim, num_rels):
super().__init__()
# two-layer RGCN
self.emb = nn.Embedding(num_nodes, h_dim)
self.conv1 = RelGraphConv(
h_dim,
h_dim,
num_rels,
regularizer="bdd",
num_bases=100,
self_loop=True,
)
self.conv2 = RelGraphConv(
h_dim,
h_dim,
num_rels,
regularizer="bdd",
num_bases=100,
self_loop=True,
)
self.dropout = nn.Dropout(0.2)
def forward(self, g, nids):
x = self.emb(nids)
h = F.relu(self.conv1(g, x, g.edata[dgl.ETYPE], g.edata["norm"]))
h = self.dropout(h)
h = self.conv2(g, h, g.edata[dgl.ETYPE], g.edata["norm"])
return self.dropout(h)
class LinkPredict(nn.Module):
def __init__(self, num_nodes, num_rels, h_dim=500, reg_param=0.01):
super().__init__()
self.rgcn = RGCN(num_nodes, h_dim, num_rels * 2)
self.reg_param = reg_param
self.w_relation = nn.Parameter(torch.Tensor(num_rels, h_dim))
nn.init.xavier_uniform_(
self.w_relation, gain=nn.init.calculate_gain("relu")
)
def calc_score(self, embedding, triplets):
s = embedding[triplets[:, 0]]
r = self.w_relation[triplets[:, 1]]
o = embedding[triplets[:, 2]]
score = torch.sum(s * r * o, dim=1)
return score
def forward(self, g, nids):
return self.rgcn(g, nids)
def regularization_loss(self, embedding):
return torch.mean(embedding.pow(2)) + torch.mean(self.w_relation.pow(2))
def get_loss(self, embed, triplets, labels):
# each row in the triplets is a 3-tuple of (source, relation, destination)
score = self.calc_score(embed, triplets)
predict_loss = F.binary_cross_entropy_with_logits(score, labels)
reg_loss = self.regularization_loss(embed)
return predict_loss + self.reg_param * reg_loss
def filter(
triplets_to_filter, target_s, target_r, target_o, num_nodes, filter_o=True
):
"""Get candidate heads or tails to score"""
target_s, target_r, target_o = int(target_s), int(target_r), int(target_o)
# Add the ground truth node first
if filter_o:
candidate_nodes = [target_o]
else:
candidate_nodes = [target_s]
for e in range(num_nodes):
triplet = (
(target_s, target_r, e) if filter_o else (e, target_r, target_o)
)
# Do not consider a node if it leads to a real triplet
if triplet not in triplets_to_filter:
candidate_nodes.append(e)
return torch.LongTensor(candidate_nodes)
def perturb_and_get_filtered_rank(
emb, w, s, r, o, test_size, triplets_to_filter, filter_o=True
):
"""Perturb subject or object in the triplets"""
num_nodes = emb.shape[0]
ranks = []
for idx in tqdm.tqdm(range(test_size), desc="Evaluate"):
target_s = s[idx]
target_r = r[idx]
target_o = o[idx]
candidate_nodes = filter(
triplets_to_filter,
target_s,
target_r,
target_o,
num_nodes,
filter_o=filter_o,
)
if filter_o:
emb_s = emb[target_s]
emb_o = emb[candidate_nodes]
else:
emb_s = emb[candidate_nodes]
emb_o = emb[target_o]
target_idx = 0
emb_r = w[target_r]
emb_triplet = emb_s * emb_r * emb_o
scores = torch.sigmoid(torch.sum(emb_triplet, dim=1))
_, indices = torch.sort(scores, descending=True)
rank = int((indices == target_idx).nonzero())
ranks.append(rank)
return torch.LongTensor(ranks)
def calc_mrr(
emb, w, test_mask, triplets_to_filter, batch_size=100, filter=True
):
with torch.no_grad():
test_triplets = triplets_to_filter[test_mask]
s, r, o = test_triplets[:, 0], test_triplets[:, 1], test_triplets[:, 2]
test_size = len(s)
triplets_to_filter = {
tuple(triplet) for triplet in triplets_to_filter.tolist()
}
ranks_s = perturb_and_get_filtered_rank(
emb, w, s, r, o, test_size, triplets_to_filter, filter_o=False
)
ranks_o = perturb_and_get_filtered_rank(
emb, w, s, r, o, test_size, triplets_to_filter
)
ranks = torch.cat([ranks_s, ranks_o])
ranks += 1 # change to 1-indexed
mrr = torch.mean(1.0 / ranks.float()).item()
return mrr
def train(
dataloader,
test_g,
test_nids,
test_mask,
triplets,
device,
model_state_file,
model,
):
optimizer = torch.optim.Adam(model.parameters(), lr=1e-2)
best_mrr = 0
for epoch, batch_data in enumerate(dataloader): # single graph batch
model.train()
g, train_nids, edges, labels = batch_data
g = g.to(device)
train_nids = train_nids.to(device)
edges = edges.to(device)
labels = labels.to(device)
embed = model(g, train_nids)
loss = model.get_loss(embed, edges, labels)
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(
model.parameters(), max_norm=1.0
) # clip gradients
optimizer.step()
print(
"Epoch {:04d} | Loss {:.4f} | Best MRR {:.4f}".format(
epoch, loss.item(), best_mrr
)
)
if (epoch + 1) % 500 == 0:
# perform validation on CPU because full graph is too large
model = model.cpu()
model.eval()
embed = model(test_g, test_nids)
mrr = calc_mrr(
embed, model.w_relation, test_mask, triplets, batch_size=500
)
# save best model
if best_mrr < mrr:
best_mrr = mrr
torch.save(
{"state_dict": model.state_dict(), "epoch": epoch},
model_state_file,
)
model = model.to(device)
if __name__ == "__main__":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Training with DGL built-in RGCN module")
# load and preprocess dataset
data = FB15k237Dataset(reverse=False)
g = data[0]
num_nodes = g.num_nodes()
num_rels = data.num_rels
train_g = get_subset_g(g, g.edata["train_mask"], num_rels)
test_g = get_subset_g(g, g.edata["train_mask"], num_rels, bidirected=True)
test_g.edata["norm"] = dgl.norm_by_dst(test_g).unsqueeze(-1)
test_nids = torch.arange(0, num_nodes)
test_mask = g.edata["test_mask"]
subg_iter = SubgraphIterator(train_g, num_rels) # uniform edge sampling
dataloader = GraphDataLoader(
subg_iter, batch_size=1, collate_fn=lambda x: x[0]
)
# Prepare data for metric computation
src, dst = g.edges()
triplets = torch.stack([src, g.edata["etype"], dst], dim=1)
# create RGCN model
model = LinkPredict(num_nodes, num_rels).to(device)
# train
model_state_file = "model_state.pth"
train(
dataloader,
test_g,
test_nids,
test_mask,
triplets,
device,
model_state_file,
model,
)
# testing
print("Testing...")
checkpoint = torch.load(model_state_file)
model = model.cpu() # test on CPU
model.eval()
model.load_state_dict(checkpoint["state_dict"])
embed = model(test_g, test_nids)
best_mrr = calc_mrr(
embed, model.w_relation, test_mask, triplets, batch_size=500
)
print(
"Best MRR {:.4f} achieved using the epoch {:04d}".format(
best_mrr, checkpoint["epoch"]
)
)