-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsgc.py
148 lines (128 loc) · 3.89 KB
/
sgc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
"""
This code was modified from the GCN implementation in DGL examples.
Simplifying Graph Convolutional Networks
Paper: https://arxiv.org/abs/1902.07153
Code: https://github.com/Tiiiger/SGC
SGC implementation in DGL.
"""
import argparse
import math
import time
import dgl
import dgl.function as fn
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl.data import (
CiteseerGraphDataset,
CoraGraphDataset,
PubmedGraphDataset,
register_data_args,
)
from dgl.nn.pytorch.conv import SGConv
def evaluate(model, g, features, labels, mask):
model.eval()
with torch.no_grad():
logits = model(g, features)[mask] # only compute the evaluation set
labels = labels[mask]
_, indices = torch.max(logits, dim=1)
correct = torch.sum(indices == labels)
return correct.item() * 1.0 / len(labels)
def main(args):
# load and preprocess dataset
if args.dataset == "cora":
data = CoraGraphDataset()
elif args.dataset == "citeseer":
data = CiteseerGraphDataset()
elif args.dataset == "pubmed":
data = PubmedGraphDataset()
else:
raise ValueError("Unknown dataset: {}".format(args.dataset))
g = data[0]
if args.gpu < 0:
cuda = False
else:
cuda = True
g = g.int().to(args.gpu)
features = g.ndata["feat"]
labels = g.ndata["label"]
train_mask = g.ndata["train_mask"]
val_mask = g.ndata["val_mask"]
test_mask = g.ndata["test_mask"]
in_feats = features.shape[1]
n_classes = data.num_labels
n_edges = g.number_of_edges()
print(
"""----Data statistics------'
#Edges %d
#Classes %d
#Train samples %d
#Val samples %d
#Test samples %d"""
% (
n_edges,
n_classes,
train_mask.int().sum().item(),
val_mask.int().sum().item(),
test_mask.int().sum().item(),
)
)
n_edges = g.number_of_edges()
# add self loop
g = dgl.remove_self_loop(g)
g = dgl.add_self_loop(g)
# create SGC model
model = SGConv(in_feats, n_classes, k=2, cached=True, bias=args.bias)
if cuda:
model.cuda()
loss_fcn = torch.nn.CrossEntropyLoss()
# use optimizer
optimizer = torch.optim.Adam(
model.parameters(), lr=args.lr, weight_decay=args.weight_decay
)
# initialize graph
dur = []
for epoch in range(args.n_epochs):
model.train()
if epoch >= 3:
t0 = time.time()
# forward
logits = model(g, features) # only compute the train set
loss = loss_fcn(logits[train_mask], labels[train_mask])
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch >= 3:
dur.append(time.time() - t0)
acc = evaluate(model, g, features, labels, val_mask)
print(
"Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
"ETputs(KTEPS) {:.2f}".format(
epoch,
np.mean(dur),
loss.item(),
acc,
n_edges / np.mean(dur) / 1000,
)
)
print()
acc = evaluate(model, g, features, labels, test_mask)
print("Test Accuracy {:.4f}".format(acc))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="SGC")
register_data_args(parser)
parser.add_argument("--gpu", type=int, default=-1, help="gpu")
parser.add_argument("--lr", type=float, default=0.2, help="learning rate")
parser.add_argument(
"--bias", action="store_true", default=False, help="flag to use bias"
)
parser.add_argument(
"--n-epochs", type=int, default=100, help="number of training epochs"
)
parser.add_argument(
"--weight-decay", type=float, default=5e-6, help="Weight for L2 loss"
)
args = parser.parse_args()
print(args)
main(args)