-
Notifications
You must be signed in to change notification settings - Fork 4
/
read_bezetting_test.py
685 lines (575 loc) · 23.1 KB
/
read_bezetting_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
# GENERATE BUSINESS INTELLIGENCE COMING FROM A PLANNING SHEET
from datetime import datetime
import string
import pandas as pd
from openpyxl import load_workbook
import streamlit as st
import plotly.express as px
import plotly.graph_objects as go
import urllib.request
test = False # To test or not to test (to see if the fillcolors in the sheet are right.)
local = True
if local:
#excel_file = r"C:\Users\rcxsm\Documents\python_scripts\streamlit_scripts\input\dummy_occupation.xlsx"
excel_file = r"https://github.com/rcsmit/streamlit_scripts/blob/main/input/dummy_occupation.xlsx?raw=true"
wb = load_workbook(excel_file, data_only=True)
else:
excel_file = r"https://github.com/rcsmit/streamlit_scripts/blob/main/input/dummy_occupation.xlsx?raw=true"
urllib.request.urlretrieve(excel_file, "test.xlsx")
wb = load_workbook("test.xlsx", data_only=True)
start_month, end_month = 3, 10
year_ = [2022]
(start_month,end_month) = st.sidebar.slider("Months (from/until (incl.))", 1, 12, (3,10))
if start_month > end_month:
st.warning("Make sure that the end month is not before the start month")
st.stop()
year = st.sidebar.multiselect("Years", year_, year_)
selection_list_accos_ = ['ALPHA' ,'BRAVO']
selection_list_accos = st.sidebar.multiselect("Which acco's", selection_list_accos_,selection_list_accos_)
sh_2022 = wb["TEST"]
# rij met de name, startrow, eindrow
to_do_2022 = [
[1, 4, 9], # bal
[11, 14, 23], # wai
]
def find_fill_color(cell):
"""Find fill color of a cell.
Hulproutine, wordt niet aangeroepen in het script
# dirty solution to find the fill color.
# as solutions given here https://stackoverflow.com/questions/58429823/getting-excel-cell-background-themed-color-as-hex-with-openpyxl
# dont work
Args:
cell (string): The cell you want to find the color from
"""
val = sh_2022[cell].fill.start_color.rgb
try:
valx = val[0]
valx = val
except:
valx = sh_2022[cell].fill.start_color.theme
theme = sh_2022[cell].fill.start_color.theme
tint = sh_2022[cell].fill.start_color.tint
st.write(f"Valx = {valx } | Theme = {theme} ||Tint = {tint}")
# DOESNT WORK
# val = int(sh_2022[cell].fill.start_color.index, 16)
# st.write (val)
# #hex_color = "%06x" % (val && 0xFFFFFF)
# st.write(hex_color)
def retrieve_prijzen():
"""Retrieve the average price for an accomodation in a given month
Returns:
df: Table with the prices
"""
sheet_id_prijzen = "1eNdn6mAglADaqOuRyQAHkx-yFgd-2mlK_fACLIHoJNk"
sheet_name_prijzen = "TEST"
url_prijzen = f"https://docs.google.com/spreadsheets/d/{sheet_id_prijzen}/gviz/tq?tqx=out:csv&sheet={sheet_name_prijzen}"
df_prijzen = pd.read_csv(url_prijzen, delimiter=",")
# df_prijzen_stacked = df_prijzen.stack()
df_prijzen_stacked = df_prijzen.melt(
"acco_type", var_name="maand_int", value_name="price_per_night"
)
df_prijzen_stacked["maand_str"] = df_prijzen_stacked["maand_int"].astype(str)
# .set_index('acco_type').stack().rename(columns={'price_per_night':'month'})
return df_prijzen_stacked
def create_check_table_per_accotype(df):
"""Generate tables per accotype to see if the sheet is 100% correct (fill colors right*).
The last column has to be zero
* a booking starts with green
* a booking end with cyaan (wissel) or red (checkout)
Args:
df (_type_): _description_
"""
list_of_accotypes_ = df.acco_type.unique()
list_of_accotypes = [list_of_accotypes_[4]] # if you only one acco type
for acco in list_of_accotypes:
df_acco = df[df["acco_type"] == acco].reset_index()
df_acco = df_acco.assign(bezet_saldo=None)
df_acco.loc[0, "bezet_saldo"] = 0
df_acco["bezet_theorie"] = (
df_acco["geel"] + df_acco["wissel"] + df_acco["new_arrival"]
)
for i in range(1, len(df_acco)):
df_acco.loc[i, "bezet_saldo"] = (
df_acco.loc[i - 1, "bezet_saldo"]
+ df_acco.loc[i, "new_arrival"]
- df_acco.loc[i, "vertrek_no_clean"]
- df_acco.loc[i, "vertrek_clean"]
)
df_acco["verschil_bezet"] = df_acco["bezet_theorie"] - df_acco["bezet_saldo"]
st.write(df_acco.to_string())
st.write(df_acco.sum())
def create_table_per_accotype_per_month(df, year):
# list_of_accotypes = df.acco_type.unique()
# # list_of_accotypes = [list_of_accotypes_[8]] #if you only one acco type
mm = ["month"]
columns = [*mm, *selection_list_accos]
what = ["omzet", "verblijfsduur", "bezetting","aantal_overnachtingen","aantal_boekingen"]
months = [
"januari",
"februari",
"maart",
"april",
"mei",
"juni",
"juli",
"augustus",
"september",
"oktober",
"november",
"december",
]
for w in what:
list_ = []
for m in range(start_month, end_month + 1):
rij = [months[m - 1]]
for acco in selection_list_accos:
df_acco = df[
(df["acco_type"] == acco) & (df["maand_str"] == str(m))
].reset_index()
in_tabel_te_plaatsen = round(print_businessinfo(df_acco, w, year), 1)
rij.append(in_tabel_te_plaatsen)
list_.append(rij)
df__ = pd.DataFrame(list_, columns=columns)
st.write()
st.write(f"{w} -- {year} ---")
if w == "omzet":
df__["Total"] = df__.sum(numeric_only=True, axis=1)
row_sum = df__.iloc[:, 1:].sum()
df__.loc["Total"] = row_sum
st.write(df__.transpose().astype(str))
def print_businessinfo(df_acco, what, year):
"""print and return the business intelligence
Args:
df_acco (_type_): _description_
what (_type_): _description_
Returns:
_type_: _description_
"""
aantal_boekingen = df_acco["wissel"].sum() + df_acco["new_arrival"].sum()
if what == None:
st.write(f"-----{year}-----")
st.write(
f"Aantal boekingen {aantal_boekingen}"
)
# st.write (f'Aantal accos {df_acco["aantal"].mean()} | aantal nachten {len(df_acco)}')
if (df_acco["aantal"].mean() * len(df_acco) - df_acco["out_of_order"].sum()) != 0:
bezetting = round(
(
df_acco["geel"].sum()
+ df_acco["wissel"].sum()
+ df_acco["new_arrival"].sum()
)
/ (
(df_acco["aantal"].mean() * len(df_acco))
- df_acco["out_of_order"].sum()
)
* 100,
2,
)
if what == None:
st.write(f"Bezetting {bezetting} %")
else:
bezetting = 0
aantal_overnachtingen = df_acco["geel"].sum() + df_acco["wissel"].sum() + df_acco["new_arrival"].sum()
if (df_acco["wissel"].sum() + df_acco["new_arrival"].sum()) != 0:
# De verblijfsduur is vertekend als je het per maand, per acco bekijkt in rustige maanden, zie bijv. bali, september 2019 (maar 1 aankomst, maar mensen die nog vanuit augustus aanwezig zijn)
verblijfsduur = round(
(
df_acco["geel"].sum()
+ df_acco["wissel"].sum()
+ df_acco["new_arrival"].sum()
)
/ (df_acco["wissel"].sum() + df_acco["new_arrival"].sum()),
2,
)
if what == None:
st.write(f"Gemiddeld verblijfsduur {verblijfsduur}")
else:
verblijfsduur = 0
omzet = df_acco["omzet"].sum()
aantal_acco = 0
if year == 2019:
to_do = to_do_2019
sh = sh_2019
if year == 2021:
to_do = to_do_2021
sh = sh_2021
if year == 2022:
to_do = to_do_2022
sh = sh_2022
for t in to_do:
a_t = str(sh["a" + str(t[0])].value)
if a_t in selection_list_accos:
aantal_acco +=(t[2]-t[1]+1)
if what == None:
st.write(f"Totale omzet: {omzet}")
if what == "omzet":
to_return = omzet
elif what == "verblijfsduur":
to_return = verblijfsduur
elif what == "bezetting":
to_return = bezetting
elif what == "aantal_boekingen":
to_return = aantal_boekingen
elif what =='aantal_overnachtingen':
to_return = aantal_overnachtingen
else:
to_return = [year, omzet,aantal_acco, round((omzet/aantal_acco),2),round(bezetting,1),aantal_boekingen,round(verblijfsduur,1),aantal_overnachtingen,round(aantal_overnachtingen/aantal_acco,1)]
return to_return
def generate_columns_to_use():
"""Generate a list with columns to use, eg. from A to ZZ
Returns:
_type_: _description_
"""
alphabet = list(string.ascii_uppercase)
alphabet_tot_h = [
"",
"A",
"B",
"C",
"D",
"E",
"F",
"G",
"H",
"I",
"J",
"K",
"L",
"M",
]
alphabet_to_use = []
for alp in alphabet_tot_h:
for alp2 in alphabet:
alphabet_to_use.append(alp + alp2)
alphabet_to_use = alphabet_to_use[1:]
return alphabet_to_use
def add_row(list, acco_type,acco_number, guest_name, checkin_date, checkout_date):
"""Add a row to the list.
Args:
list (list): the list where the new row has to be added
acco_type (str): _description_
acco_number (str): _description_
guest_name (str): _description_
checkin_date (str): _description_
checkout_date (str): _description_
Returns:
list: _description_
"""
number_of_days = datetime.strptime(checkout_date, "%Y-%m-%d") - datetime.strptime(checkin_date, "%Y-%m-%d")
list.append([acco_type,acco_number, guest_name, checkin_date, checkout_date, number_of_days])
return list
def make_booking_table(year):
"""Generate a booking_tabel from the booking chart
columns: [acco_type,acco_number, guest_name, checkin_date, checkout_date, number_of_days]
Args:
year (int): the year of which you want the booking table
"""
year__ = year
columns_to_use = generate_columns_to_use()
st.subheader("Booking table")
if year == 2022:
to_do = to_do_2022
sh = sh_2022
list =[]
for t in to_do:
acco_type = str(sh["a" + str(t[0])].value)
for r in range(t[1],t[2]+1):
print (r)
acco_number_cell = "a" + str(r)
acco_number = str(sh[acco_number_cell].value)
for c in columns_to_use:
cell_ = c +str(r)
datum_ = str(sh[c + "2"].value)
try:
datum2 = datetime.strptime(datum_, "%Y-%m-%d %M:%H:%S")
datum = datetime.strftime(datum2, "%Y-%m-%d")
month = datum2.month
year = datum2.year
except:
datum = None
month = None
year = None
val = sh[cell_].fill.start_color.rgb
try:
valx = val[0]
valx = val
except:
valx = sh[cell_].fill.start_color.theme
if valx == 9: # licht groen
checkin_date = datum
guest_name = str(sh[c + str(r)].value)
elif valx == "FFFF0000": # rood
checkout_date = datum
list = add_row(list,acco_type,acco_number, guest_name, checkin_date, checkout_date)
elif valx == "FF7030A0": # paars
checkout_date = datum
list = add_row(list, acco_type,acco_number, guest_name, checkin_date, checkout_date)
elif valx == 5: # bruin
pass
elif valx == 0 or valx == 6: # zwart of grijs
pass
elif valx == "FF00B0F0": # lichtblauw / cyaan
checkout_date = datum
list = add_row(list,acco_type,acco_number, guest_name, checkin_date, checkout_date)
checkin_date = datum
guest_name = str(sh[c + str(r)].value)
elif valx == "FFFFFF00": # geel / bezet
pass
df = pd.DataFrame(
list,
columns=[
"acco_type","acco_number",
"guest_name",
"checkin_date",
"checkout_date","number_of_days"
],
)
df['number_of_days'] = df['number_of_days'].dt.days.astype('int16')
st.subheader(f"Distribution of length of stay in {year__}")
st.write (df)
st.write (f"Number of days total : {df['number_of_days'].sum()}")
st.write (f"Number of days min : {df['number_of_days'].min()}")
st.write (f"Number of days max : {df['number_of_days'].max()}")
st.write (f"Number of days average : {df['number_of_days'].mean()}")
freq_tabel = df['number_of_days'].value_counts()
fig = px.histogram(df, x="number_of_days")
#plotly.offline.plot(fig)
st.plotly_chart(fig, use_container_width=True)
st.write("Frequency table")
st.write (freq_tabel)
def make_complete_df(columns_to_use, year):
"""Generate the dataframe
Columns: ['acco_type', 'aantal', 'datum',"month","year", "new_arrival","vertrek_no_clean", "vertrek_clean", "wissel", "geel"])
Args:
columns_to_use (list with strings): which columns to scrape, eg. from "A to ... ZZ "
Returns:
df: dataframe
"""
list_complete = []
if year == 2022:
to_do = to_do_2022
sh = sh_2022
for a in columns_to_use:
# [rij met de naam, start, eind]
for t in to_do:
acco_type = str(sh["a" + str(t[0])].value)
ii = []
for x in range(t[1], t[2] + 1):
ii.append(a + str(x))
bezet = 0
aantal = t[2] - t[1] + 1
vertrek_no_clean = 0
vertrek_clean = 0
vertrek_totaal = 0
wissel = 0
geel = 0
out_of_order = 0
new_arrival = 0
try:
datum = str(sh[a + "2"].value)
datum2 = datetime.strptime(datum, "%Y-%m-%d %M:%H:%S")
datum3 = datetime.strftime(datum2, "%Y-%m-%d")
month = datum2.month
year = datum2.year
except:
datum3 = "STOP"
if datum3 != "STOP":
for i in ii:
val = sh[i].fill.start_color.rgb
try:
valx = val[0]
valx = val
except:
valx = sh[i].fill.start_color.theme
if valx == "FFFF0000": # rood
vertrek_no_clean += 1
elif valx == "FF7030A0": # paars
vertrek_clean += 1
elif valx == 5: # bruin
vertrek_totaal += 1
elif valx == 0 or valx == 6: # zwart of grijs
out_of_order += 1
elif valx == "FF00B0F0": # lichtblauw / cyaan
wissel += 1
elif valx == "FFFFFF00": # geel / bezet
geel += 1
elif valx == 9: # licht groen
new_arrival += 1
row = [
acco_type,
aantal,
datum3,
month,
year,
new_arrival,
vertrek_no_clean,
vertrek_clean,
wissel,
geel,
out_of_order,
]
list_complete.append(row)
df = pd.DataFrame(
list_complete,
columns=[
"acco_type",
"aantal",
"datum",
"month",
"year",
"new_arrival",
"vertrek_no_clean",
"vertrek_clean",
"wissel",
"geel",
"out_of_order",
],
)
df["in_house"] = df["geel"] + df["new_arrival"] + df["wissel"]
df["maand_str"] = df["month"].astype(str)
df = df[(df["month"] >= start_month) & (df["month"] <= end_month)]
df = df[df["acco_type"].isin(selection_list_accos)]
st.write(df)
return df
def make_date_columns(df):
df['datum'] = pd.to_datetime(df.datum, format='%Y-%m-%d')
df["jaar"] = df["datum"].dt.strftime("%Y")
df["maand"] = df["datum"].dt.strftime("%m").astype(str).str.zfill(2)
df["dag"] = df["datum"].dt.strftime("%d").astype(str).str.zfill(2)
df["maand_dag"] = df["maand"] + "-" + df["dag"]
df["dag_maand"] = df["dag"] + "-" + df["maand"]
df["datum_str"] = df["datum"].astype(str)
df["datum_"] = pd.to_datetime(df["maand_dag"], format="%m-%d")
return df
def make_occopuation_graph_per_acco(df_):
for y in year:
df_all_years_grouped = df_[df_["jaar"] == str(y)]
data = []
fig = go.Figure()
df_all_years_grouped = df_all_years_grouped.sort_values(by='datum')
df_all_years_pivot_a = df_all_years_grouped.pivot(index=['maand_dag','datum_'], columns='acco_type', values='occupation').reset_index()
width, opacity = 1,1
for a in selection_list_accos:
try:
# niet alle accomodaties zijn gebruikt in alle jaren
points = go.Scatter(
name = a,
x=df_all_years_pivot_a["datum_"],
y=df_all_years_pivot_a[a],
line=dict(width=width),
opacity=opacity,
mode="lines",
)
data.append(points)
except:
pass
layout = go.Layout(
yaxis=dict(title=f"Bezetting (%)"),
title=f"Bezetting per acco type ({a}) in {y}",
)
fig = go.Figure(data=data, layout=layout)
fig.update_layout(xaxis=dict(tickformat="%d-%m"))
#fig.show()
#plotly.offline.plot(fig)
st.plotly_chart(fig, use_container_width=True)
#st.write(df_all_years_pivot)
def make_occopuation_graph(df_all_years_grouped):
data = []
fig = go.Figure()
df_all_years_grouped = df_all_years_grouped.sort_values(by='datum')
df_all_years_grouped["jaar"] = df_all_years_grouped["jaar"].astype(str)
df_all_years_pivot = df_all_years_grouped.pivot(index=['maand_dag','datum_'], columns='jaar', values='occupation').reset_index()
#st.write(df_all_years_pivot)
for y in year:
y_=str(y)
if y_ == "2022":
width = 2
opacity = 1
else:
width = 0.7
opacity = 0.8
points = go.Scatter(
name = y_,
x=df_all_years_pivot["datum_"],
y=df_all_years_pivot[y_],
line=dict(width=width),
opacity=opacity,
mode="lines",
)
data.append(points)
layout = go.Layout(
yaxis=dict(title=f"Bezetting (%)"),
title="Bezetting",
)
fig = go.Figure(data=data, layout=layout)
fig.update_layout(xaxis=dict(tickformat="%d-%m"))
#fig.show()
#plotly.offline.plot(fig)
st.plotly_chart(fig, use_container_width=True)
#st.write(df_all_years_pivot)
def most_checkins_out(df_all_years_grouped):
for y in year:
df_all_years_grouped_one_year = df_all_years_grouped[df_all_years_grouped["jaar"]==str(y)]
df_checkouts = df_all_years_grouped_one_year.sort_values(by='checkouts',ascending=False)
checkouts = df_checkouts[["datum", "checkouts"]]
df_checkins = df_all_years_grouped_one_year.sort_values(by='checkins', ascending=False)
checkins = df_checkins[["datum", "checkins"]]
st.subheader (y)
col1,col2=st.columns(2)
with col1:
st.subheader("Checkouts")
st.write (checkouts.head(10))
fig = px.histogram(df_checkouts, x="checkouts", title=y)
st.plotly_chart(fig, use_container_width=True)
with col2:
st.subheader("Checkins")
st.write (checkins.head(10))
fig = px.histogram(df_checkins, x="checkins", title=y)
st.plotly_chart(fig, use_container_width=True)
def calculate_occupation(df):
df["checkins"] = df["wissel"] + df["new_arrival"]
df["checkouts"] = df["wissel"] + df["vertrek_no_clean"]+ df["vertrek_clean"]
df["occupation"] = round(100*(df["new_arrival"]+df["wissel"]+df["geel"]) /
(df["aantal"]-df["out_of_order"]),2)
df= make_date_columns(df)
return df
def generate_and_show_info_all_years():
df_all_years = pd.DataFrame()
list,columns = [], ["year","omzet_eur","aantal_acco","omzet_per_acco","bezetting_%","aantal_boekingen","gem_verblijfsduur","aantal_overnachtingen","aantal_overnachtingen_per_acco"]
for y in year:
columns_to_use = generate_columns_to_use()
df_ = make_complete_df(columns_to_use, y)
if test:
create_check_table_per_accotype(df_)
else:
df_prijzen_stacked = retrieve_prijzen()
df = pd.merge(
df_, df_prijzen_stacked, how="inner", on=["acco_type", "maand_str"]
)
df["omzet"] = df["in_house"] * df["price_per_night"]
row = print_businessinfo(df, None, y)
list.append(row)
create_table_per_accotype_per_month(df, y)
df_all_years = pd.concat([df_all_years, df_], axis=0).sort_values(by='datum')
total_df = pd.DataFrame(list, columns=columns)
st.write(total_df)
st.subheader("Info over alle jaren")
st.table(total_df)
return df_all_years
def main():
df_all_years = generate_and_show_info_all_years()
df_all_years_non_grouped= make_date_columns(df_all_years)
df_all_years_grouped = df_all_years_non_grouped.groupby(["datum"]).sum().reset_index()
df_all_years_grouped = calculate_occupation(df_all_years_grouped)
df_all_years_non_grouped = calculate_occupation(df_all_years_non_grouped)
#df=df.groupby('Name').agg({'Missed':'sum', 'Credit':'sum','Grade':'mean'}).rename(columns=d)
# df_all_years_grouped_maand_omzet = df_all_years_non_grouped.groupby(["jaar", "maand"]).sum().reset_index().pivot(index='jaar', columns='maand', values='omzet_eur')
#print (df_all_years_grouped_maand_omzet)
make_occopuation_graph(df_all_years_grouped)
make_occopuation_graph_per_acco(df_all_years_non_grouped)
most_checkins_out(df_all_years_grouped)
make_booking_table(2022)
if __name__ == "__main__":
main()
#find_fill_color("B4")