-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproblem17.py
executable file
·49 lines (48 loc) · 2.7 KB
/
problem17.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import time
numbers = ["zero one two three four five six seven eight nine".split()]
irregular = "ten eleven twelve thirteen fourteen fifteen sixteen seventeen eighteen nineteen".split()
numbers.append("twenty thirty forty fifty sixty seventy eighty ninety".split())
power = "hundred thousand million billion trillion quadrillion quintillion sextillion septillion octillion nonillion decillion".split()
def num2letter(num):#works for all numbers less than 1000
diglen = len(str(num))
if diglen == 1:
return numbers[0][num] #base case
elif diglen == 2 and num - (num % 10) == 10:
return irregular[(num % 10)]#accounting for 11-19 "irregulars"
elif diglen == 2 and num % 10 == 0:
return numbers[1][((num - (num % 10)) / 10) - 2]
elif diglen == 2:
return numbers[1][((num - (num % 10))/10) - 2] + " " + numbers[0][num % 10]
elif diglen == 3 and num % 100 == 0:
dig = (num - (num % 10**(diglen - 1))) / (10**(diglen - 1))
num = num % (10**(diglen - 1))
return numbers[0][dig] + " " + power[diglen-3]
#Recursively stripping the leading number and calling the function again
elif diglen == 3:
dig = (num - (num % 10**(diglen - 1))) / (10**(diglen - 1))
num = num % (10**(diglen - 1))
return (numbers[0][dig] + " " + power[diglen-3] + " and " + num2letter(num))
def num2letterX(num):#works for all numbers...I hope
'''
For this method, in accordance with general English language, I strip away the number in partitions of three. For example, the number 12,345,678, I initially only look at 12, then 345, then 678. I simply use the original num2letter program to convert those chunks, and add on the appropriate power of 10^3 (thousand, million, billion...).
'''
diglen = len(str(num))
diglentemp = int((diglen-1) / 3) * 3 #This is used to find what power of 10^3 to add on
temp = (num - num % (10**(diglentemp))) / (10**(diglentemp)) #This takes only the numbers in the first partition
if diglen > 3 and (num % 10**int(((diglen-1)/3)*3) == 0):#for the case of a number divisible by the next partition -- example, 342000 / 1000 = 0
num = num % (10**(diglentemp)) #This reduces the number to the next partition
return num2letter(temp) + " " + power[int(diglen / 3)]
elif diglen > 3:
num = num % (10**(diglentemp)) #This reduces the number to the next partition
return num2letter(temp) + " " + power[int(diglen / 3)] + " " + num2letterX(num)
else:#Since the other method has the base case, this refers all digits less than three to that method
return num2letter(num)
def PEproblem17(limit):
tot = 0
for i in xrange(1,limit+1):
tot += len(num2letterX(i).replace(' ',''))
return tot
start = time.time()
result = PEproblem17(1000)
end = time.time()
print "The answer is %d , and that took %f seconds." % (result, end-start)