-
Notifications
You must be signed in to change notification settings - Fork 12
/
get_data.py
173 lines (137 loc) · 4.86 KB
/
get_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import math
import random
import torch
import torchaudio
from torchaudio import transforms
from torchaudio.datasets import SPEECHCOMMANDS
EPS = 1e-9
SAMPLE_RATE = 16000
# default labels from GSC dataset
DEFAULT_LABELS = [
'backward',
'bed',
'bird',
'cat',
'dog',
'down',
'eight',
'five',
'follow',
'forward',
'four',
'go',
'happy',
'house',
'learn',
'left',
'marvin',
'nine',
'no',
'off',
'on',
'one',
'right',
'seven',
'sheila',
'six',
'stop',
'three',
'tree',
'two',
'up',
'visual',
'wow',
'yes',
'zero'
]
N_CLASS = len(DEFAULT_LABELS)
def prepare_wav(waveform, sample_rate):
if sample_rate != SAMPLE_RATE:
resampler = transforms.Resample(orig_freq=sample_rate, new_freq=SAMPLE_RATE)
waveform = resampler(waveform)
to_mel = transforms.MelSpectrogram(sample_rate=SAMPLE_RATE, n_fft=1024, f_max=8000, n_mels=40)
log_mel = (to_mel(waveform) + EPS).log2()
return log_mel
class SubsetSC(SPEECHCOMMANDS):
def __init__(self, subset: str, path="./"):
super().__init__(path, download=True)
self.to_mel = transforms.MelSpectrogram(sample_rate=SAMPLE_RATE, n_fft=1024, f_max=8000, n_mels=40)
self.subset = subset
def load_list(filename):
filepath = os.path.join(self._path, filename)
with open(filepath) as fh:
return [
os.path.join(self._path, line.strip()) for line in fh
]
self._noise = []
if subset == "validation":
self._walker = load_list("validation_list.txt")
elif subset == "testing":
self._walker = load_list("testing_list.txt")
elif subset == "training":
excludes = load_list("validation_list.txt") + load_list("testing_list.txt")
excludes = set(excludes)
self._walker = [w for w in self._walker if w not in excludes]
noise_paths = [w for w in os.listdir(os.path.join(self._path, "_background_noise_")) if w.endswith(".wav")]
for item in noise_paths:
noise_path = os.path.join(self._path, "_background_noise_", item)
noise_waveform, noise_sr = torchaudio.sox_effects.apply_effects_file(noise_path, effects=[])
noise_waveform = transforms.Resample(orig_freq=noise_sr, new_freq=SAMPLE_RATE)(noise_waveform)
self._noise.append(noise_waveform)
else:
raise ValueError(f"Unknown subset {subset}. Use validation/testing/training")
def _noise_augment(self, waveform):
noise_waveform = random.choice(self._noise)
noise_sample_start = 0
if noise_waveform.shape[1] - waveform.shape[1] > 0:
noise_sample_start = random.randint(0, noise_waveform.shape[1] - waveform.shape[1])
noise_waveform = noise_waveform[:, noise_sample_start:noise_sample_start+waveform.shape[1]]
signal_power = waveform.norm(p=2)
noise_power = noise_waveform.norm(p=2)
snr_dbs = [20, 10, 3]
snr = random.choice(snr_dbs)
snr = math.exp(snr / 10)
scale = snr * noise_power / signal_power
noisy_signal = (scale * waveform + noise_waveform) / 2
return noisy_signal
def _shift_augment(self, waveform):
shift = random.randint(-1600, 1600)
waveform = torch.roll(waveform, shift)
if shift > 0:
waveform[0][:shift] = 0
elif shift < 0:
waveform[0][shift:] = 0
return waveform
def _augment(self, waveform):
if random.random() < 0.8:
waveform = self._noise_augment(waveform)
waveform = self._shift_augment(waveform)
return waveform
def __getitem__(self, n):
waveform, sample_rate, label, _, _ = super().__getitem__(n)
if sample_rate != SAMPLE_RATE:
resampler = transforms.Resample(orig_freq=sample_rate, new_freq=SAMPLE_RATE)
waveform = resampler(waveform)
if self.subset == "training":
waveform = self._augment(waveform)
log_mel = (self.to_mel(waveform) + EPS).log2()
return log_mel, label
_label_to_idx = {label: i for i, label in enumerate(DEFAULT_LABELS)}
_idx_to_label = {i: label for label, i in _label_to_idx.items()}
def label_to_idx(label):
return _label_to_idx[label]
def idx_to_label(idx):
return _idx_to_label[idx]
def pad_sequence(batch):
batch = [item.permute(2, 1, 0) for item in batch]
batch = torch.nn.utils.rnn.pad_sequence(batch, batch_first=True)
return batch.permute(0, 3, 2, 1)
def collate_fn(batch):
tensors, targets = [], []
for log_mel, label in batch:
tensors.append(log_mel)
targets.append(label_to_idx(label))
tensors = pad_sequence(tensors)
targets = torch.LongTensor(targets)
return tensors, targets