-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathintervene.py
218 lines (170 loc) · 7.98 KB
/
intervene.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from obiwan.new_models import FuseCBM
from obiwan.utils import recall
import torch
import torch.nn.functional as F
import wandb #noqa
try:
from rich.tqdm import tqdm
except ImportError:
from tqdm import tqdm
def get_concepts(model, dataloader, device):
"""Evaluate a CBM model on the data loader for accuracy (classification setting)
Args:
model (CBM): CBM or FuseCBM model
dataloader (DataLoader): DataLoader object
device (str): Device to run the model on
num_classes (int): Number of classes in the dataset
num_concepts (int): Number of concepts per image in the dataset
Returns:
Tuple[float, float, float]: Concept accuracy, Class accuracy, Concept F1 score
"""
model.to(device)
model.eval()
concepts = []
for batch in tqdm(dataloader):
if len(batch) == 2:
imgs, (labels, attrs) = batch
else:
imgs, attrs, labels = batch
imgs = imgs.to(device)
attrs = attrs.to(device)
labels = labels.to(device)
with torch.no_grad():
concept, _ = model(imgs)
# concept, _, _ = model(imgs)
concept = torch.cat(concept, dim=1)
concepts.append(concept)
concepts = torch.cat(concepts, dim=0)
return concepts
def evaluate_recall(model: FuseCBM, dataloader, device, values=None):
"""Evaluate a FuseCBM model on the data loader for recall (retrieval setting)
Args:
model (FuseCBM): FuseCBM model
dataloader (DataLoader): DataLoader object
device (str): Device to run the model on
intervene (bool): Whether to intervene or not
pre_concept (bool): Whether to use pre-concept or not
Returns:
Tuple[float, float, float]: Recall@1, Recall@5, Recall@10
"""
model.eval()
model.to(device)
embeddings_list = []
labels_list = []
with torch.no_grad():
for imgs, attrs, labels in tqdm(dataloader):
imgs = imgs.to(device)
attrs = attrs.to(device)
labels = labels.to(device)
if values is None:
embeddings = model.get_fused_embedding(imgs, return_concepts=False, return_extra_dim=False)
else:
embeddings = model.get_fused_embedding_with_intervention(imgs, attrs, return_concepts=False, return_extra_dim=False, intervention_values=values)
embeddings = F.normalize(embeddings, dim=1)
embeddings_list.append(embeddings)
labels_list.append(labels)
embeddings = torch.cat(embeddings_list, dim=0)
labels = torch.cat(labels_list, dim=0)
recall_list, num_rec = recall(embeddings, labels, rank=[1,5,10], ret_num=True)
return embeddings, labels, recall_list, num_rec
def collect_embeddings_with_probs(model: FuseCBM, dataloader, device, values):
"""Collect embeddings from a FuseCBM model on the data loader with different probabilities
Args:
model (FuseCBM): FuseCBM model
dataloader (DataLoader): DataLoader object
device (str): Device to run the model on
values (torch.Tensor): Values to intervene on
Returns:
Tuple[torch.Tensor, torch.Tensor]: List of embeddings, List of labels
"""
model.eval()
model.to(device)
probs = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 ,0.7, 0.8, 0.9, 1.0]
embeddings_list = []
labels_list = []
with torch.no_grad():
for prob in probs:
prob_embeddings = []
prob_labels = []
for imgs, attrs, labels in tqdm(dataloader):
imgs = imgs.to(device)
attrs = attrs.to(device)
labels = labels.to(device)
if values is None:
embeddings = model.get_fused_embedding(imgs, return_concepts=False, return_extra_dim=False)
else:
embeddings = model.get_fused_embedding_with_prob(imgs, attrs, return_concepts=False, intervention_values=values, prob_correct=prob)
# embeddings = model.get_fused_embedding_with_percentage_correction(imgs, attrs, return_concepts=False, return_extra_dim=False, intervention_values=values, percentage_correction=prob)
embeddings = F.normalize(embeddings, dim=1)
prob_embeddings.append(embeddings)
prob_labels.append(labels)
embeddings_list.append(torch.cat(prob_embeddings, dim=0))
labels_list.append(torch.cat(prob_labels, dim=0))
return embeddings_list, labels_list
def evaluate_recall_with_probs(model: FuseCBM, dataloader, device, values=None, prob=1.0):
"""Evaluate a FuseCBM model on the data loader for recall (retrieval setting) with a gallery
Args:
model (FuseCBM): FuseCBM model
dataloader (DataLoader): DataLoader object
device (str): Device to run the model on
intervene (bool): Whether to intervene or not
pre_concept (bool): Whether to use pre-concept embeddings or post-concept embeddings
gallery_features (torch.Tensor): Gallery features
gallery_labels (torch.Tensor): Gallery labels
Returns:
Tuple[float, float, float]: Recall@1, Recall@5, Recall@10
"""
model.eval()
model.to(device)
embeddings_list = []
labels_list = []
with torch.no_grad():
for imgs, attrs, labels in (dataloader):
imgs = imgs.to(device)
attrs = attrs.to(device)
labels = labels.to(device)
if values is None:
embeddings = model.get_fused_embedding(imgs, return_concepts=False, return_extra_dim=False)
else:
# embeddings = model.get_fused_embedding_with_prob(imgs, attrs, return_concepts=False, intervention_values=values, prob_correct=prob)
embeddings = model.get_fused_embedding_with_percentage_correction(imgs, attrs, return_concepts=False, return_extra_dim=False, intervention_values=values, percentage_correction=prob)
embeddings = F.normalize(embeddings, dim=1)
embeddings_list.append(embeddings)
labels_list.append(labels)
embeddings = torch.cat(embeddings_list, dim=0)
labels = torch.cat(labels_list, dim=0)
recall_list, num_rec = recall(embeddings, labels, rank=[1,5,10], ret_num=True)
return embeddings, labels, recall_list, num_rec
def evaluate_recall_with_probs_gallery(model: FuseCBM, dataloader, device, values=None, prob=1.0, gallery_features=None, gallery_labels=None):
"""Evaluate a FuseCBM model on the data loader for recall (retrieval setting) with a gallery
Args:
model (FuseCBM): FuseCBM model
dataloader (DataLoader): DataLoader object
device (str): Device to run the model on
intervene (bool): Whether to intervene or not
pre_concept (bool): Whether to use pre-concept embeddings or post-concept embeddings
gallery_features (torch.Tensor): Gallery features
gallery_labels (torch.Tensor): Gallery labels
Returns:
Tuple[float, float, float]: Recall@1, Recall@5, Recall@10
"""
model.eval()
model.to(device)
embeddings_list = []
labels_list = []
with torch.no_grad():
for imgs, attrs, labels in (dataloader):
imgs = imgs.to(device)
attrs = attrs.to(device)
labels = labels.to(device)
if values is None:
embeddings = model.get_fused_embedding(imgs, return_concepts=False, return_extra_dim=False)
else:
embeddings = model.get_fused_embedding_with_prob(imgs, attrs, return_concepts=False, intervention_values=values, prob_correct=prob)
embeddings = F.normalize(embeddings, dim=1)
embeddings_list.append(embeddings)
labels_list.append(labels)
embeddings = torch.cat(embeddings_list, dim=0)
labels = torch.cat(labels_list, dim=0)
recall_list, num_rec = recall(embeddings, labels, rank=[1,5,10], ret_num=True, gallery_features=gallery_features, gallery_labels=gallery_labels)
return embeddings, labels, recall_list, num_rec