-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
496 lines (425 loc) · 17.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import os
import argparse
# need to parse arguments before loading pytorch
parser = argparse.ArgumentParser()
parser.add_argument("--seed", default=42, type=int, help="Random seed, default 42")
parser.add_argument("--device", default=None, type=str, help="Limit device to run on, default None (no limit)")
parser.add_argument(
"--devices", default=None, type=str, help="Devices for multi-device training ex. [0,1,2,3], default None "
)
parser.add_argument("--flag", default="none", type=str, help="flag for distinction of experiments, default none")
parser.add_argument("--validation", default="false", type=str, help="Use validation split: true/false, default false")
# lr
parser.add_argument(
"--lr", default=1e-5, type=float, help="Learning rate for model training, only if scheduler is none, default 1e-5"
)
parser.add_argument(
"--scheduler", default="none", type=str, help="Scheduler: LinearWarmup, CosineDecay or none, default none"
)
parser.add_argument("--init_lr", default=0.0, type=float, help="starting lr, only if scheduler is not none, default 0")
parser.add_argument(
"--warmup_lr", default=1e-4, type=float, help="max warmup lr, only if scheduler is not none, default 1e-4"
)
parser.add_argument(
"--target_lr", default=1e-6, type=float, help="final lr, only if scheduler is LinearWarmup, default 1e-6"
)
parser.add_argument(
"--warmup_epochs", default=1, type=int, help="Warmup epochs, only if scheduler is not none, default 1"
)
parser.add_argument(
"--decay_epochs", default=3, type=int, help="Decay epochs, only if scheduler is not none, default 3"
)
parser.add_argument(
"--tuning_epochs", default=1, type=int, help="Final lr epochs, only if scheduler is LinearWarmup, default 1"
)
parser.add_argument("--epochs", default=5, type=int, help="Training epochs, only if scheduler is none, default 5")
# dataset
parser.add_argument("--dataset", default="-", type=str, help="Dataset to run on")
parser.add_argument("--use_cold_start", default="false", type=str, help="Use cold start evaluation, default false")
parser.add_argument("--use_time_split", default="false", type=str, help="Use time split evaluation, default false")
parser.add_argument(
"--prefix",
default=None,
type=str,
help="Add prefix to every item description (example for e5 models add query: as prefix to every item description - see https://huggingface.co/intfloat/multilingual-e5-base#faq), default None",
)
# sentence transformer details
parser.add_argument("--sbert", default=None, type=str, help="Input sentence transformer model to train")
parser.add_argument("--image_model", default=None, type=str, help="Input image model model to train")
parser.add_argument(
"--max_seq_length",
default=None,
type=int,
help="Maximum sequence length, default None (use original value from sbert)",
)
parser.add_argument(
"--preproces_html",
default="false",
type=str,
help="whether to get rid of html inside descriptions (not relevant for LLM generated descriptions), default false",
)
# model hyperparams
parser.add_argument(
"--max_output",
default=10000,
type=int,
help="Max number of items on output (m parameter from paper), default 10000",
)
parser.add_argument(
"--batch_size", default=1024, type=int, help="Batch size of sampled users per training step, default 1024"
)
parser.add_argument(
"--top_k",
default=0,
type=int,
help="Optimize only for top-k predictions on the output of the model. May bring some improvement for large, sparse datasets (in theory). Default 0 (not use)",
)
parser.add_argument(
"--sbert_batch_size",
default=200,
type=int,
help="Batch size for computing embeddings with sentence transformer, default 200",
)
# output model name
parser.add_argument(
"--model_name",
default="my_model",
type=str,
help="Output sentence transformer model name to train, default my_model",
)
# evaluate
parser.add_argument(
"--evaluate", default="false", type=str, help="final evaluation after training [true/false], default false"
)
parser.add_argument(
"--evaluate_epoch", default="false", type=str, help="evaluation after every epoch [true/false], default false"
)
parser.add_argument(
"--save_every_epoch", default="true", type=str, help="save after every epoch [true/false], default true"
)
args = parser.parse_args([] if "__file__" not in globals() else None)
print(args)
# limit visible devces for pytorch
if args.device is not None:
print(f"Limiting devices to {args.device}")
os.environ["CUDA_VISIBLE_DEVICES"] = f"{args.device}"
# force the usage of pytorch backend in keras
os.environ["KERAS_BACKEND"] = "torch"
# now we can finally import modules
import keras
import math
import numpy as np
import sentence_transformers
import subprocess
import time
import torch
from sentence_transformers import SentenceTransformer
from tqdm import tqdm
from callbacks import evaluateWriter
from config import config
from dataloaders import beeformerDataset
from models import NMSEbeeformer, SparseKerasELSA # , simpleBee
from schedules import LinearWarmup
from utils import *
import images
torch.set_float32_matmul_precision('medium')
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device {DEVICE}")
def load_data(args):
if args.validation == "true":
what = "val"
else:
what = "test"
# read data
if args.dataset in config.keys():
dataset, params = config[args.dataset]
dataset.load_interactions(**params)
if args.use_time_split == "true":
evaluator = TimeBasedEvaluation(dataset, what=what)
elif args.use_cold_start == "true":
evaluator = ColdStartEvaluation(dataset, what=what)
else:
# user-based split strategy (default)
evaluator = Evaluation(dataset, what=what)
items_d = dataset.items_texts
items_d["asin"] = items_d.item_id
if args.validation == "true":
_train_interactions = dataset.train_interactions
else:
_train_interactions = dataset.full_train_interactions
elif args.dataset == "goodlens":
# todo: should be rewritten to combine any two datasets (not as simple as it looks)
dataset, params = config["ml20m"]
dataset.load_interactions(**params)
if args.use_cold_start == "true":
evaluator = ColdStartEvaluation(dataset, what=what)
elif args.use_time_split == "true":
evaluator = TimeBasedEvaluation(dataset, what=what)
else:
evaluator = Evaluation(dataset, what=what)
dataset2, params2 = config["goodbooks"]
dataset2.load_interactions(**params2)
if args.use_cold_start == "true":
# this must be done, because init in evaluator is modifiyng dataset object
# it also mean that evaluation will be eventually done on movielens
evaluator2 = ColdStartEvaluation(dataset2)
else:
evaluator2 = Evaluation(dataset2)
# merge the two datasets
if args.validation == "true":
df = dataset.train_interactions.copy()
else:
df = dataset.full_train_interactions.copy()
it = dataset.items_texts.copy()
df["user_id"] = df.user_id.apply(lambda x: "m" + x)
df["item_id"] = df.item_id.apply(lambda x: "m" + x)
it["item_id"] = it.item_id.apply(lambda x: "m" + x)
if args.validation == "true":
df2 = dataset2.train_interactions.copy()
else:
df2 = dataset2.full_train_interactions.copy()
it2 = dataset2.items_texts.copy()
df2["user_id"] = df2.user_id.apply(lambda x: "g" + x)
df2["item_id"] = df2.item_id.apply(lambda x: "g" + x)
it2["item_id"] = it2.item_id.apply(lambda x: "g" + x)
_train_interactions = pd.concat([df, df2])
items_texts = pd.concat([it, it2])
_train_interactions["item_id"] = _train_interactions["item_id"].astype("category")
_train_interactions["user_id"] = _train_interactions["user_id"].astype("category")
items_d = items_texts
items_d["asin"] = items_d.item_id
else:
print("Unknown dataset. List of available datsets: \n")
for x in config.keys():
print(x)
print("goodlens")
print()
return None, None, None
return dataset, evaluator, _train_interactions, items_d
def load_text_model(args, items_d, dataset, _train_interactions):
# load and preprocess text side information
print("Preprocessing texts.")
if args.evaluate == "true" or args.evaluate_epoch == "true":
am_itemids = items_d.asin.to_numpy()
cc = np.array(dataset.all_interactions.item_id.cat.categories)
ccdf = pd.Series(cc).to_frame()
ccdf.columns = ["item_id"]
amdf = pd.Series(am_itemids).to_frame().reset_index()
amdf.columns = ["idx", "item_id"]
am_locator = pd.merge(how="inner", left=ccdf, right=amdf).idx.to_numpy()
if args.dataset in config.keys():
am_texts = items_d._text_attributes
elif args.preproces_html == "true":
am_texts = items_d.fillna(0).apply(
lambda row: f"{row.title}: {preproces_html('. '.join(eval(row.description)))}", axis=1
)
else:
print("using html preprocessing")
am_texts = items_d.fillna(0).apply(lambda row: f"{row.title}: {'. '.join(eval(row.description))}", axis=1)
am_texts_all = am_texts.to_numpy()[am_locator] # evaluation texts
else:
am_texts_all = None
am_itemids = items_d.asin.to_numpy()
cc = np.array(_train_interactions.item_id.cat.categories)
ccdf = pd.Series(cc).to_frame()
ccdf.columns = ["item_id"]
amdf = pd.Series(am_itemids).to_frame().reset_index()
amdf.columns = ["idx", "item_id"]
am_locator = pd.merge(how="inner", left=ccdf, right=amdf).idx.to_numpy()
am_texts = items_d._text_attributes
am_texts = am_texts.to_numpy()[am_locator] # training texts
# for e5 models
if args.prefix is not None:
print("adding prefix", args.prefix, "to all texts")
am_texts = np.array([args.prefix + x for x in am_texts])
print(am_texts[:10])
# create sentence Transformer that will be trained
print("Creating sbert")
sbert = SentenceTransformer(args.sbert, device=DEVICE)
if args.max_seq_length is not None:
sbert.max_seq_length = args.max_seq_length
# tokenize item text side information (descriptions)
am_tokenized = sbert.tokenize(am_texts)
if am_texts_all is None:
am_texts_all = am_texts
return am_texts_all, am_tokenized, sbert
def load_image_model(args, items_d, dataset, _train_interactions):
image_model = images.ImageModel(args.image_model, device=DEVICE)
tokenized_images_dict = images.read_images_into_dict(dataset.all_interactions.item_id.cat.categories, fn=image_model.tokenize, path=dataset.images_dir, suffix=dataset.images_suffix)
tokenized_train_images = images.read_images_from_dict(_train_interactions.item_id.cat.categories, tokenized_images_dict)
tokenized_test_images = images.read_images_from_dict(dataset.all_interactions.item_id.cat.categories, tokenized_images_dict)
return tokenized_test_images, tokenized_train_images, image_model
def prepare_schedule(args, steps_per_epoch):
# prepare training schedule
if args.scheduler == "CosineDecay":
schedule = keras.optimizers.schedules.CosineDecay(
0.0,
steps_per_epoch * (args.decay_epochs + args.warmup_epochs),
alpha=0.0,
name="CosineDecay",
warmup_target=args.warmup_lr,
warmup_steps=steps_per_epoch * args.warmup_epochs,
)
epochs = args.warmup_epochs + args.decay_epochs + args.tuning_epochs
print("Using schedule with config", schedule.get_config())
elif args.scheduler == "LinearWarmup":
schedule = LinearWarmup(
warmup_steps=steps_per_epoch * args.warmup_epochs,
decay_steps=steps_per_epoch * args.decay_epochs,
starting_lr=args.init_lr,
warmup_lr=args.warmup_lr,
final_lr=args.target_lr,
)
print("Using schedule with config", schedule.get_config())
epochs = args.warmup_epochs + args.decay_epochs + args.tuning_epochs
else:
schedule = args.lr
epochs = args.epochs
print("Using constant learning rate of", schedule)
return schedule, epochs
def main(args):
# prepare logging folder
folder = os.path.join(
"results", f"{str(pd.Timestamp('today'))} {9*int(1e6)+np.random.randint(999999)}".replace(" ", "_")
)
if not os.path.exists(folder):
os.makedirs(folder)
vargs = vars(args)
vargs["cuda_or_cpu"] = DEVICE
pd.Series(vargs).to_csv(f"{folder}/setup.csv")
print(f"Saving results to {folder}")
# set random seeds for reproducibility
torch.manual_seed(args.seed)
keras.utils.set_random_seed(args.seed)
np.random.seed(args.seed)
print(f"seeds set to {args.seed}")
if args.validation == "true":
what = "val"
else:
what = "test"
# read data
dataset, evaluator, _train_interactions, items_d = load_data(args)
if dataset is None:
return
if args.sbert is not None:
# load and preprocess text side information
am_texts_all, am_tokenized, sbert = load_text_model(args, items_d, dataset, _train_interactions)
elif args.image_model is not None:
am_texts_all, am_tokenized, sbert = load_image_model(args, items_d, dataset, _train_interactions)
else:
print("Dont know what to train. Please specify the --sbert argument.")
# training in paralel on multiple gpus
if args.devices is not None:
print(f"Will run sbert on devices {args.devices}")
devices_to_run = eval(args.devices)
module_sbert = torch.nn.DataParallel(sbert, device_ids=devices_to_run, output_device=devices_to_run[0])
else:
module_sbert = sbert
# create X train
print("Creating interaction matrix for training")
X = get_sparse_matrix_from_dataframe(_train_interactions)
# prepare dataloader
print("Creating dataloader")
datal = beeformerDataset(
X, am_tokenized, DEVICE, shuffle=True, max_output=args.max_output, batch_size=args.batch_size
)
steps_per_epoch = len(datal)
print(sbert)
# create trainable keras model
model = NMSEbeeformer(
tokenized_sentences=am_tokenized,
items_idx=_train_interactions.item_id.cat.categories,
sbert=keras.layers.TorchModuleWrapper(module_sbert),
device=DEVICE,
top_k=args.top_k,
sbert_batch_size=args.sbert_batch_size,
)
# prepare lr schedule
schedule, epochs = prepare_schedule(args, steps_per_epoch)
model.to(DEVICE)
# create callback object to monitor the training procedure
cbs = []
if args.evaluate == "true" or args.evaluate_epoch == "true" or args.save_every_epoch == "true":
eval_cb = evaluateWriter(
items_idx=dataset.all_interactions.item_id.cat.categories,
sbert=sbert,
evaluator=evaluator,
logdir=folder,
DEVICE=DEVICE,
texts=am_texts_all,
sbert_name=args.model_name,
evaluate_epoch=args.evaluate_epoch,
save_every_epoch=args.save_every_epoch,
)
cbs.append(eval_cb)
# build the model
model.compile(
optimizer=keras.optimizers.Nadam(learning_rate=schedule), loss=NMSE, metrics=[keras.metrics.CosineSimilarity()]
)
print("Building the model")
model.train_step(datal[0])
model.built = True
model.summary()
print("Starting training loop")
train_time = 0
# training
fits = []
print(f"Training for {args.warmup_epochs+args.decay_epochs+args.tuning_epochs} epochs.")
f = model.fit(
datal,
epochs=epochs,
callbacks=cbs,
)
fits.append(f)
train_time = time.time() - train_time
# save resulting model
sbert.save(args.model_name)
# final evaluation
if args.evaluate == "true":
embs = sbert.encode(am_texts_all, show_progress_bar=True)
model = SparseKerasELSA(
len(dataset.all_interactions.item_id.cat.categories),
embs.shape[1],
dataset.all_interactions.item_id.cat.categories,
device=DEVICE,
)
model.to(DEVICE)
model.set_weights([embs])
if args.use_cold_start:
df_preds = model.predict_df(
evaluator.test_src,
candidates_df=(
evaluator.cold_start_candidates_df if hasattr(evaluator, "cold_start_candidates_df") else None
),
k=1000,
)
df_preds = df_preds[
~df_preds.set_index(["item_id", "user_id"]).index.isin(
evaluator.test_src.set_index(["item_id", "user_id"]).index
)
]
else:
df_preds = model.predict_df(evaluator.test_src)
results = evaluator(df_preds)
print(results)
pd.Series(results).to_csv(f"{folder}/result.csv")
print("results file written")
# final logs
ks = list(f.history.keys())
dc = {k: np.array([(f.history[k]) for f in fits]).flatten() for k in ks}
dc["epoch"] = np.arange(len(dc[list(dc.keys())[0]])) + 1
df = pd.DataFrame(dc)
df[list(df.columns[-1:]) + list(df.columns[:-1])]
df.to_csv(f"{folder}/history.csv")
print("history file written")
try:
pd.concat([pd.Series(x).to_frame().T for x in eval_cb.results_list]).to_csv(f"{folder}/results-history.csv")
except:
print("eval_cb not exist")
pd.Series(train_time).to_csv(f"{folder}/timer.csv")
print("timer written")
out = subprocess.check_output(["nvidia-smi"])
with open(os.path.join(folder, f"{args.dataset}_{args.flag}.log"), "w") as f:
f.write(out.decode("utf-8"))
if __name__ == "__main__":
main(args)