-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathexplainer_tabular.py
525 lines (478 loc) · 22.5 KB
/
explainer_tabular.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
import collections
import copy
from functools import partial
import json
import warnings
import numpy as np
import sklearn
import sklearn.preprocessing
from sklearn.utils import check_random_state
from discretize import QuartileDiscretizer
from discretize import DecileDiscretizer
from discretize import EntropyDiscretizer
from discretize import BaseDiscretizer
import explanation
import explainer_base
class TableDomainMapper(explanation.DomainMapper):
def __init__(self, feature_names, feature_values, scaled_row,
categorical_features, discretized_feature_names=None):
self.exp_feature_names = feature_names
self.discretized_feature_names = discretized_feature_names
self.feature_names = feature_names
self.feature_values = feature_values
self.scaled_row = scaled_row
self.all_categorical = len(categorical_features) == len(scaled_row)
self.categorical_features = categorical_features
def map_exp_ids(self, exp):
names = self.exp_feature_names
if self.discretized_feature_names is not None:
names = self.discretized_feature_names
return [(names[x[0]], x[1]) for x in exp]
def visualize_instance_html(self,
exp,
label,
div_name,
exp_object_name,
show_table=True,
show_all=False):
if not show_table:
return ''
weights = [0] * len(self.feature_names)
for x in exp:
weights[x[0]] = x[1]
out_list = list(zip(self.exp_feature_names,
self.feature_values,
weights))
if not show_all:
out_list = [out_list[x[0]] for x in exp]
ret = u'''
%s.show_raw_tabular(%s, %d, %s);
''' % (exp_object_name, json.dumps(out_list, ensure_ascii=False), label, div_name)
return ret
class LimeTabularExplainer(object):
def __init__(self,
training_data,
mode="classification",
training_labels=None,
feature_names=None,
categorical_features=None,
categorical_names=None,
kernel_width=None,
kernel=None,
verbose=False,
class_names=None,
feature_selection='auto',
discretize_continuous=False,
discretizer='quartile',
sample_around_instance=False,
random_state=None):
self.random_state = check_random_state(random_state)
self.mode = mode
self.categorical_names = categorical_names or {}
self.sample_around_instance = sample_around_instance
if categorical_features is None:
categorical_features = []
if feature_names is None:
feature_names = [str(i) for i in range(training_data.shape[1])]
self.categorical_features = list(categorical_features)
self.feature_names = list(feature_names)
self.discretizer = None
if discretize_continuous:
if discretizer == 'quartile':
self.discretizer = QuartileDiscretizer(
training_data, self.categorical_features,
self.feature_names, labels=training_labels)
elif discretizer == 'decile':
self.discretizer = DecileDiscretizer(
training_data, self.categorical_features,
self.feature_names, labels=training_labels)
elif discretizer == 'entropy':
self.discretizer = EntropyDiscretizer(
training_data, self.categorical_features,
self.feature_names, labels=training_labels)
elif isinstance(discretizer, BaseDiscretizer):
self.discretizer = discretizer
else:
raise ValueError('''Discretizer must be 'quartile',''' +
''' 'decile', 'entropy' or a''' +
''' BaseDiscretizer instance''')
self.categorical_features = list(range(training_data.shape[1]))
discretized_training_data = self.discretizer.discretize(
training_data)
if kernel_width is None:
kernel_width = np.sqrt(training_data.shape[1]) * .75
kernel_width = float(kernel_width)
if kernel is None:
def kernel(d, kernel_width):
return np.sqrt(np.exp(-(d ** 2) / kernel_width ** 2))
kernel_fn = partial(kernel, kernel_width=kernel_width)
self.feature_selection = feature_selection
self.base = explainer_base.LimeBase(kernel_fn, verbose, random_state=self.random_state)
self.scaler = None
self.class_names = class_names
self.scaler = sklearn.preprocessing.StandardScaler(with_mean=False)
self.scaler.fit(training_data)
self.feature_values = {}
self.feature_frequencies = {}
for feature in self.categorical_features:
if self.discretizer is not None:
column = discretized_training_data[:, feature]
else:
column = training_data[:, feature]
feature_count = collections.Counter(column)
values, frequencies = map(list, zip(*(feature_count.items())))
self.feature_values[feature] = values
self.feature_frequencies[feature] = (np.array(frequencies) /
float(sum(frequencies)))
self.scaler.mean_[feature] = 0
self.scaler.scale_[feature] = 1
@staticmethod
def convert_and_round(values):
return ['%.2f' % v for v in values]
# def explain_instance(self,
# data_row,
# predict_fn,
# labels=(1,),
# top_labels=None,
# num_features=10,
# num_samples=5000,
# distance_metric='euclidean',
# model_regressor=None):
# data, inverse = self.__data_inverse(data_row, num_samples)
# scaled_data = (data - self.scaler.mean_) / self.scaler.scale_
#
# distances = sklearn.metrics.pairwise_distances(
# scaled_data,
# scaled_data[0].reshape(1, -1),
# metric=distance_metric
# ).ravel()
#
# yss = predict_fn(inverse)
#
# # for classification, the model needs to provide a list of tuples - classes
# # along with prediction probabilities
# if self.mode == "classification":
# if len(yss.shape) == 1:
# raise NotImplementedError("LIME does not currently support "
# "classifier models without probability "
# "scores. If this conflicts with your "
# "use case, please let us know: "
# "https://github.com/datascienceinc/lime/issues/16")
# elif len(yss.shape) == 2:
# if self.class_names is None:
# self.class_names = [str(x) for x in range(yss[0].shape[0])]
# else:
# self.class_names = list(self.class_names)
# if not np.allclose(yss.sum(axis=1), 1.0):
# warnings.warn("""
# Prediction probabilties do not sum to 1, and
# thus does not constitute a probability space.
# Check that you classifier outputs probabilities
# (Not log probabilities, or actual class predictions).
# """)
# else:
# raise ValueError("Your model outputs "
# "arrays with {} dimensions".format(len(yss.shape)))
#
# # for regression, the output should be a one-dimensional array of predictions
# else:
# try:
# assert isinstance(yss, np.ndarray) and len(yss.shape) == 1
# except AssertionError:
# raise ValueError("Your model needs to output single-dimensional \
# numpyarrays, not arrays of {} dimensions".format(yss.shape))
#
# predicted_value = yss[0]
# min_y = min(yss)
# max_y = max(yss)
#
# # add a dimension to be compatible with downstream machinery
# yss = yss[:, np.newaxis]
#
# feature_names = copy.deepcopy(self.feature_names)
# if feature_names is None:
# feature_names = [str(x) for x in range(data_row.shape[0])]
#
# values = self.convert_and_round(data_row)
#
# for i in self.categorical_features:
# if self.discretizer is not None and i in self.discretizer.lambdas:
# continue
# name = int(data_row[i])
# if i in self.categorical_names:
# name = self.categorical_names[i][name]
# feature_names[i] = '%s=%s' % (feature_names[i], name)
# values[i] = 'True'
# categorical_features = self.categorical_features
#
# discretized_feature_names = None
# if self.discretizer is not None:
# categorical_features = range(data.shape[1])
# discretized_instance = self.discretizer.discretize(data_row)
# discretized_feature_names = copy.deepcopy(feature_names)
# for f in self.discretizer.names:
# discretized_feature_names[f] = self.discretizer.names[f][int(
# discretized_instance[f])]
#
# domain_mapper = TableDomainMapper(feature_names,
# values,
# scaled_data[0],
# categorical_features=categorical_features,
# discretized_feature_names=discretized_feature_names)
# ret_exp = explanation.Explanation(domain_mapper,
# mode=self.mode,
# class_names=self.class_names)
# ret_exp.scaled_data = scaled_data
# if self.mode == "classification":
# ret_exp.predict_proba = yss[0]
# if top_labels:
# labels = np.argsort(yss[0])[-top_labels:]
# ret_exp.top_labels = list(labels)
# ret_exp.top_labels.reverse()
# else:
# ret_exp.predicted_value = predicted_value
# ret_exp.min_value = min_y
# ret_exp.max_value = max_y
# labels = [0]
#
# for label in labels:
# (ret_exp.intercept[label],
# ret_exp.local_exp[label],
# ret_exp.score[label], ret_exp.local_pred[label]) = self.base.explain_instance_with_data(
# scaled_data,
# yss,
# distances,
# label,
# num_features,
# model_regressor=model_regressor,
# feature_selection=self.feature_selection)
#
# if self.mode == "regression":
# ret_exp.intercept[1] = ret_exp.intercept[0]
# ret_exp.local_exp[1] = [x for x in ret_exp.local_exp[0]]
# ret_exp.local_exp[0] = [(i, -1 * j) for i, j in ret_exp.local_exp[1]]
#
# return ret_exp
def explain_instance_hclust(self,
data_row,
predict_fn,
labels=(1,),
top_labels=None,
num_features=10,
num_samples=5000,
distance_metric='euclidean',
model_regressor=None,
clustered_data = None,
regressor='linear', explainer = 'lime'):
if explainer == 'lime':
data, inverse = self.__data_inverse(data_row, num_samples)
scaled_data = (data - self.scaler.mean_) / self.scaler.scale_
distances = sklearn.metrics.pairwise_distances(
scaled_data,
scaled_data[0].reshape(1, -1),
metric=distance_metric
).ravel()
yss = predict_fn(inverse)
else:
data, inverse = self.__data_inverse_hclust(data_row, clustered_data)
scaled_data = (data - self.scaler.mean_) / self.scaler.scale_
distances = sklearn.metrics.pairwise_distances(
scaled_data,
scaled_data[0].reshape(1, -1),
metric=distance_metric
).ravel()
yss = predict_fn(clustered_data)
if self.mode == "classification":
if len(yss.shape) == 1:
raise NotImplementedError("LIME does not currently support "
"classifier models without probability "
"scores. If this conflicts with your "
"use case, please let us know: "
"https://github.com/datascienceinc/lime/issues/16")
elif len(yss.shape) == 2:
if self.class_names is None:
self.class_names = [str(x) for x in range(yss[0].shape[0])]
else:
self.class_names = list(self.class_names)
if not np.allclose(yss.sum(axis=1), 1.0):
warnings.warn("""
Prediction probabilties do not sum to 1, and
thus does not constitute a probability space.
Check that you classifier outputs probabilities
(Not log probabilities, or actual class predictions).
""")
else:
raise ValueError("Your model outputs "
"arrays with {} dimensions".format(len(yss.shape)))
else:
try:
assert isinstance(yss, np.ndarray) and len(yss.shape) == 1
except AssertionError:
raise ValueError("Your model needs to output single-dimensional \
numpyarrays, not arrays of {} dimensions".format(yss.shape))
predicted_value = yss[0]
min_y = min(yss)
max_y = max(yss)
yss = yss[:, np.newaxis]
feature_names = copy.deepcopy(self.feature_names)
if feature_names is None:
feature_names = [str(x) for x in range(data_row.shape[0])]
values = self.convert_and_round(data_row)
for i in self.categorical_features:
if self.discretizer is not None and i in self.discretizer.lambdas:
continue
name = int(data_row[i])
if i in self.categorical_names:
name = self.categorical_names[i][name]
feature_names[i] = '%s=%s' % (feature_names[i], name)
values[i] = 'True'
categorical_features = self.categorical_features
discretized_feature_names = None
if self.discretizer is not None:
categorical_features = range(data.shape[1])
discretized_instance = self.discretizer.discretize(data_row)
discretized_feature_names = copy.deepcopy(feature_names)
for f in self.discretizer.names:
discretized_feature_names[f] = self.discretizer.names[f][int(
discretized_instance[f])]
domain_mapper = TableDomainMapper(feature_names,
values,
scaled_data[0],
categorical_features=categorical_features,
discretized_feature_names=discretized_feature_names)
ret_exp = explanation.Explanation(domain_mapper,
mode=self.mode,
class_names=self.class_names)
ret_exp.scaled_data = scaled_data
if self.mode == "classification":
ret_exp.predict_proba = yss[0]
if top_labels:
labels = np.argsort(yss[0])[-top_labels:]
ret_exp.top_labels = list(labels)
ret_exp.top_labels.reverse()
else:
ret_exp.predicted_value = predicted_value
ret_exp.min_value = min_y
ret_exp.max_value = max_y
labels = [0]
for label in labels:
(ret_exp.intercept[label],
ret_exp.local_exp[label],
ret_exp.score[label], ret_exp.local_pred[label]) = self.base.explain_instance_with_data(
scaled_data,
yss,
distances,
label,
num_features,
model_regressor=model_regressor,
feature_selection=self.feature_selection, regressor=regressor)
if self.mode == "regression":
ret_exp.intercept[1] = ret_exp.intercept[0]
ret_exp.local_exp[1] = [x for x in ret_exp.local_exp[0]]
ret_exp.local_exp[0] = [(i, -1 * j) for i, j in ret_exp.local_exp[1]]
return ret_exp
def __data_inverse(self,
data_row,
num_samples):
data = np.zeros((num_samples, data_row.shape[0]))
categorical_features = range(data_row.shape[0])
if self.discretizer is None:
data = self.random_state.normal(
0, 1, num_samples * data_row.shape[0]).reshape(
num_samples, data_row.shape[0])
if self.sample_around_instance:
data = data * self.scaler.scale_ + data_row
else:
data = data * self.scaler.scale_ + self.scaler.mean_
categorical_features = self.categorical_features
first_row = data_row
else:
first_row = self.discretizer.discretize(data_row)
data[0] = data_row.copy()
inverse = data.copy()
for column in categorical_features:
values = self.feature_values[column]
freqs = self.feature_frequencies[column]
inverse_column = self.random_state.choice(values, size=num_samples,
replace=True, p=freqs)
binary_column = np.array([1 if x == first_row[column]
else 0 for x in inverse_column])
binary_column[0] = 1
inverse_column[0] = data[0, column]
data[:, column] = binary_column
inverse[:, column] = inverse_column
if self.discretizer is not None:
inverse[1:] = self.discretizer.undiscretize(inverse[1:])
inverse[0] = data_row
return data, inverse
def __data_inverse_hclust(self,
data_row,
samples):
data = np.zeros((samples.shape[0], data_row.shape[0]))
categorical_features = range(data_row.shape[0])
first_row = self.discretizer.discretize(data_row)
data[0] = data_row.copy()
inverse = data.copy()
for column in categorical_features:
values = self.feature_values[column]
freqs = self.feature_frequencies[column]
inverse_column = samples[:,column]
# self.random_state.choice(values, size=num_samples,
# replace=True, p=freqs)
binary_column = np.array([1 if x == data_row[column]
else 0 for x in inverse_column])
binary_column[0] = 1
inverse_column[0] = data[0, column]
data[:, column] = binary_column
inverse[:, column] = inverse_column
# if self.discretizer is not None:
# inverse[1:] = self.discretizer.undiscretize(inverse[1:])
inverse[0] = data_row
return data, inverse
class RecurrentTabularExplainer(LimeTabularExplainer):
def __init__(self, training_data, training_labels=None, feature_names=None,
categorical_features=None, categorical_names=None,
kernel_width=None, kernel=None, verbose=False, class_names=None,
feature_selection='auto', discretize_continuous=True,
discretizer='quartile', random_state=None):
n_samples, n_timesteps, n_features = training_data.shape
training_data = np.transpose(training_data, axes=(0, 2, 1)).reshape(
n_samples, n_timesteps * n_features)
self.n_timesteps = n_timesteps
self.n_features = n_features
feature_names = ['{}_t-{}'.format(n, n_timesteps - (i + 1))
for n in feature_names for i in range(n_timesteps)]
super(RecurrentTabularExplainer, self).__init__(
training_data,
training_labels=training_labels,
feature_names=feature_names,
categorical_features=categorical_features,
categorical_names=categorical_names,
kernel_width=kernel_width,
kernel=kernel,
verbose=verbose,
class_names=class_names,
feature_selection=feature_selection,
discretize_continuous=discretize_continuous,
discretizer=discretizer,
random_state=random_state)
def _make_predict_proba(self, func):
def predict_proba(X):
n_samples = X.shape[0]
new_shape = (n_samples, self.n_features, self.n_timesteps)
X = np.transpose(X.reshape(new_shape), axes=(0, 2, 1))
return func(X)
return predict_proba
def explain_instance(self, data_row, classifier_fn, labels=(1,),
top_labels=None, num_features=10, num_samples=5000,
distance_metric='euclidean', model_regressor=None):
data_row = data_row.T.reshape(self.n_timesteps * self.n_features)
classifier_fn = self._make_predict_proba(classifier_fn)
return super(RecurrentTabularExplainer, self).explain_instance(
data_row, classifier_fn,
labels=labels,
top_labels=top_labels,
num_features=num_features,
num_samples=num_samples,
distance_metric=distance_metric,
model_regressor=model_regressor)