forked from kdevanath/Where-Should-I-Live
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclean_data.py
227 lines (207 loc) · 10.7 KB
/
clean_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import pandas as pd
import json
import requests
import csv
from pprint import pprint
from config import api_key
def read_cities():
filepath = "Resources/cities.csv"
cities_df = pd.read_csv(filepath, index_col=0)
us_cities = cities_df.loc[cities_df['Country'] == 'United States']
def request_cities_in_usa():
url = f'https://www.numbeo.com/api/cities?api_key={api_key}&country=United States'
print(url)
response = requests.get(url)
response.raise_for_status()
json_file_name = "Resources/cities_in_usa.json"
with open(json_file_name, "w") as json_file:
json.dump(response.json(), json_file)
def write_cities_to_csv():
with open('Resources/cities_in_usa.json') as data_file:
data = json.load(data_file)
df = pd.DataFrame.from_dict(data['cities'], orient='columns')
print(df.head())
df.to_csv("Resources/cities_in_usa.csv", index=False)
def request_indices_for_us_cities():
header = ['city_id', 'health_care_index', 'crime_index','restaurant_price_index',
'climate_index','pollution_index','quality_of_life_index','cpi_index','property_price_to_income_ratio',
'purchasing_power_incl_rent_index', 'traffic_index']
i = 0
with open("Resources/clean_us_cities.csv",mode='w') as clean_cities_file:
clean_cities_writer = csv.writer(clean_cities_file, delimiter=',')
with open("Resources/cities_indices.csv",mode='w') as indices_file:
index_writer = csv.writer(indices_file, delimiter=',')
index_writer.writerow(header)
with open("Resources/cities_in_usa.csv",'r') as csvfile:
zeroCols = 0
reader = csv.DictReader(csvfile)
for row in reader:
if i==0:
clean_cities_writer.writerow(row)
pass
i+=1
city_id = row['city_id']
url = f'https://www.numbeo.com/api/indices?api_key={api_key}&city_id={city_id}'
response = requests.get(url)
response_json = response.json()
data = []
#data.append(row['city'])
data.append(row['city_id'])
if response_json.get('health_care_index'):
data.append(response_json.get('health_care_index'))
else:
data.append(0)
zeroCols += 1
if response_json.get('crime_index'):
data.append(response_json.get('crime_index'))
else:
data.append(0)
zeroCols += 1
if response_json.get('restaurant_price_index'):
data.append(response_json.get('restaurant_price_index'))
else:
data.append(0)
zeroCols += 1
if response_json.get('climate_index'):
data.append(response_json.get('climate_index'))
else:
zeroCols += 1
data.append(0)
if response_json.get('pollution_index'):
data.append(response_json.get('pollution_index'))
else:
zeroCols += 1
data.append(0)
if response_json.get('quality_of_life_index'):
data.append(response_json.get('quality_of_life_index'))
else:
zeroCols += 1
data.append(0)
if response_json.get('cpi_index'):
data.append(response_json.get('cpi_index'))
else:
zeroCols += 1
data.append(0)
if response_json.get('property_price_to_income_ratio'):
data.append(response_json.get('property_price_to_income_ratio'))
else:
zeroCols += 1
data.append(0)
if response_json.get('purchasing_power_incl_rent_index'):
data.append(response_json.get('purchasing_power_incl_rent_index'))
else:
zeroCols += 1
data.append(0)
if response_json.get('traffic_index'):
data.append(response_json.get('traffic_index'))
else:
zeroCols += 1
data.append(0)
if zeroCols <= 3:
index_writer.writerow(data)
city = list(row.values())
clean_cities_writer.writerow(city)
print(row.values(),city)
zeroCols = 0
def request_cost_of_living_rankings():
url = f'https://www.numbeo.com/api/rankings_by_city_current?api_key={api_key}§ion=1'
response = requests.get(url)
response_json = response.json()
df = pd.DataFrame.from_dict(response_json)
df = df.loc[df['country'] == 'United States']
df = df.drop(['country'], axis=1)
df['ranking'] = df.index
df = df[['city_id', 'city_name', 'ranking','cpi_and_rent_index','rent_index',
'purchasing_power_incl_rent_index','restaurant_price_index','groceries_index',
'cpi_index']] # rearrange column here
print(df.head())
df.to_csv("Resources/col_rankings_db.csv",index=False)
url = f'https://www.numbeo.com/api/rankings_by_city_current?api_key={api_key}§ion=2'
response = requests.get(url)
response_json = response.json()
df = pd.DataFrame.from_dict(response_json)
df = df.loc[df['country'] == 'United States']
df = df.drop(['country'], axis=1)
df['ranking'] = df.index
df = df[['city_id', 'city_name', 'ranking','gross_rental_yield_outside_of_centre','price_to_rent_ratio_outside_of_centre',
'house_price_to_income_ratio','affordability_index','mortgage_as_percentage_of_income',
'price_to_rent_ratio_city_centre','gross_rental_yield_city_centre']] # rearrange column here
print(df.head())
df.to_csv("Resources/property_prices_db.csv",index=False)
url = f'https://www.numbeo.com/api/rankings_by_city_current?api_key={api_key}§ion=7'
response = requests.get(url)
response_json = response.json()
df = pd.DataFrame.from_dict(response_json)
df = df.loc[df['country'] == 'United States']
df = df.drop(['country'], axis=1)
df['ranking'] = df.index
df = df[['city_id', 'city_name', 'ranking','crime_index','safety_index']] # rearrange column here
df.to_csv("Resources/crime_rankings_db.csv",index=False)
url = f'https://www.numbeo.com/api/rankings_by_city_current?api_key={api_key}§ion=8'
response = requests.get(url)
response_json = response.json()
df = pd.DataFrame.from_dict(response_json)
df = df.loc[df['country'] == 'United States']
df = df.drop(['country'], axis=1)
df['ranking'] = df.index
df = df[['city_id', 'city_name', 'ranking','pollution_index','exp_pollution_index']] # rearrange column here
df.to_csv("Resources/pollution_rankings_db.csv",index=False)
url = f'https://www.numbeo.com/api/rankings_by_city_current?api_key={api_key}§ion=12'
response = requests.get(url)
response_json = response.json()
df = pd.DataFrame.from_dict(response_json)
df = df.loc[df['country'] == 'United States']
df = df.drop(['country'], axis=1)
df['ranking'] = df.index
df = df[['city_id', 'city_name', 'ranking', 'traffic_time_index','quality_of_life_index','healthcare_index',
'purchasing_power_incl_rent_index','house_price_to_income_ratio','pollution_index',
'climate_index','safety_index','cpi_index']] # rearrange column here
df.to_csv("Resources/qol_rankings_db.csv",index=False)
def clean_rankings_csv():
filepath = "Resources/crime_rankings.csv"
df = pd.read_csv(filepath)
df = df.drop()
def clean_median_income():
df1 = pd.read_csv("Resources/merge3.csv")
df4 = pd.read_csv("Resources/cities_indices_db.csv")
for i in ['Median','Mean','Stdev','sum_w']:
df4[i] = df4['city_id'].map(dict(zip(df1['city_id'],df1[i])))
df4.dropna(subset=['Median'])
df4 = df4.rename(columns={"Mean": "mean", "Median": "median", "Stdev": "std_dev"}, errors="raise")
df4.to_csv("Resources/us_income_qol_db.csv")
def rearrange_columns_for_db():
filepath = "Resources/clean_us_cities.csv"
cities_df = pd.read_csv(filepath, index_col=0)
cols_to_order=['city','latitude','longitude','city_id']
new_columns = cols_to_order + (cities_df.columns.drop(cols_to_order).tolist())
cities_df = cities_df[new_columns]
filepath = "Resources/clean_us_cities_db.csv"
cities_df.to_csv(filepath)
def take_care_of_zeros():
filepath = "Resources/cities_indices.csv"
indices_df = pd.read_csv(filepath, index_col=0)
indices_df['health_care_index']=indices_df['health_care_index'].replace(0,indices_df['health_care_index'].mean())
indices_df['crime_index']=indices_df['crime_index'].replace(0,indices_df['crime_index'].mean())
indices_df['restaurant_price_index']=indices_df['restaurant_price_index'].replace(0,indices_df['restaurant_price_index'].mean())
indices_df['climate_index']=indices_df['climate_index'].replace(0,indices_df['climate_index'].mean())
indices_df['pollution_index']=indices_df['pollution_index'].replace(0,indices_df['pollution_index'].mean())
indices_df['quality_of_life_index']=indices_df['quality_of_life_index'].replace(0,indices_df['quality_of_life_index'].mean())
indices_df['cpi_index']=indices_df['cpi_index'].replace(0,indices_df['cpi_index'].mean())
indices_df['property_price_to_income_ratio']=indices_df['property_price_to_income_ratio'].replace(0,indices_df['property_price_to_income_ratio'].mean())
indices_df['purchasing_power_incl_rent_index']=indices_df['purchasing_power_incl_rent_index'].replace(0,indices_df['purchasing_power_incl_rent_index'].mean())
indices_df['traffic_index']=indices_df['traffic_index'].replace(0,indices_df['traffic_index'].mean())
indices_df = indices_df.round(3)
filepath = "Resources/cities_indices_db.csv"
indices_df.to_csv(filepath)
#ETL Part here...
"""
if __name__ == "__main__":
#Request all cities from usa from nombeo site
#request_cities_in_usa()
#write_to_csv()
#request_indices_for_us_cities()
#request_cost_of_living_rankings()
#rearrange_columns_for_db()
#take_care_of_zeros()
clean_median_income()
"""